Dual superconductor model

Dual superconductor model

In the theory of quantum chromodynamics, dual superconductor models attempt to explain confinement of quarks in terms of an electromagnetic dual theory of superconductivity.

In an electromagnetic dual theory the roles of electric and magnetic fields are interchanged. The BCS theory of superconductivity explains superconductivity as the result of the condensation electric chargers to cooper pairs. In a dual superconductor an analogous effect occurs through the condensation of magnetic charges (also called magnetic monopoles). In ordinary electromagnetic theory, no monopoles have been shown to exist. However, in quantum chromodynamics — the theory of colour charge which explains the strong interaction between quarks — the colour charges can be view as (non-abelian) analogues of electric charges and corresponding magnetic monopoles are known to exist. Dual superconductor models posit that condensation of these magnetic monopoles in a superconductive state explains colour confinement — the phenomenon that only neutrally coloured bound states are observed at low energies.

Qualitatively, confinement in dual superconductor models can be understood as a result of the dual to the Meissner effect. The Meissner effect says that a superconducting metal will try to expel magnetic field lines from its interior. If a magnetic field is forced to run through the superconductor, the field lines are compressed in magnetic flux tubes. In a dual superconductor the roles of magnetic and electric fields are exchanged and the Meissner effect tries to expel electric field lines. Quarks and antiquarks carry opposite colour charges, and for a quark–antiquark pair 'electric' field lines run from the quark to the antiquark. If the quark–antiquark pair are immersed in a dual superconductor, then the electric field lines get compressed to a flux tube. The energy associated to the tube is proportional to its length, and the potential energy of the quark–antiquark is proportional to their separation. A quark–antiquark will therefore always bind regardless of their separation, which explains why no unbound quarks are ever found.[note 1]

Dual superconductors are described by (a dual to) the Landau–Ginzburg model, which is equivalent to the Abelian Higgs model.

The dual superconductor model is motivated by several observations in calculations using lattice gauge theory. The model, however, also has some shortcomings. In particular, although it confines coloured quarks, it fails to confine colour of some gluons, allowing coloured bound states at energies observable in particle colliders.

Notes

  1. ^ In practice, the potential energy at large distances will be big enough to form new quark–antiquark pairs from the vacuum, which split the flux tube and bind to the original quark and antiquark.

References

See also



Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Dual superconducting model — In quantum gauge theory, the dual superconducting model is a proposed explanation of confinement as the dual of a superconductor. A superconductor, at least BCS superconductors, is another name for the Higgs mechanism.Suppose a gauge theory has… …   Wikipedia

  • QCD vacuum — The QCD vacuum is the vacuum state of quantum chromodynamics (QCD). It is an example of a non perturbative vacuum state, characterized by many non vanishing condensates such as the gluon condensate or the quark condensate. These condensates… …   Wikipedia

  • Ginzburg–Landau theory — In physics, Ginzburg–Landau theory is a mathematical theory used to model superconductivity. It does not purport to explain the microscopic mechanisms giving rise to superconductivity. Instead, it examines the macroscopic properties of a… …   Wikipedia

  • Mathematics and Physical Sciences — ▪ 2003 Introduction Mathematics       Mathematics in 2002 was marked by two discoveries in number theory. The first may have practical implications; the second satisfied a 150 year old curiosity.       Computer scientist Manindra Agrawal of the… …   Universalium

  • Nobel Prizes — ▪ 2009 Introduction Prize for Peace       The 2008 Nobel Prize for Peace was awarded to Martti Ahtisaari, former president (1994–2000) of Finland, for his work over more than 30 years in settling international disputes, many involving ethnic,… …   Universalium

  • List of Russian people — The Millennium of Russia monument in Veliky Novgorod, featuring the statues and reliefs of the most celebrated people in the first 1000 years of Russian history …   Wikipedia

  • Materia (física) — Véase también: Materia El término materia tradicionalmente se refiere a la sustancia de la que todos los objetos están hechos. [1] [2] Una forma común de identificar esta “sustancia” es mediante sus propiedades físicas; así una definición común… …   Wikipedia Español

  • Phase transition — This diagram shows the nomenclature for the different phase transitions. A phase transition is the transformation of a thermodynamic system from one phase or state of matter to another. A phase of a thermodynamic system and the states of matter… …   Wikipedia

  • Polywell — The polywell is a plasma confinement concept that combines elements of inertial electrostatic confinement and magnetic confinement fusion, intended ultimately to produce fusion power. The name polywell is a portmanteau of polyhedron and potential …   Wikipedia

  • Unsolved problems in physics — This is a list of some of the major unsolved problems in physics. Some of these problems are theoretical, meaning that existing theories seem incapable of explaining some observed phenomenon or experimental result. The others are experimental,… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”