Dresden High Magnetic Field Laboratory

Dresden High Magnetic Field Laboratory

Coordinates: 51°03′49″N 13°56′59″E / 51.06361°N 13.94972°E / 51.06361; 13.94972

Dresden High Magnetic Field Laboratory
Established: 2004
Director: Joachim Wosnitza
Responsible body: Free State of Saxony,
Federal Ministry of
Education and Research
(Germany)
Research Field: Matter
Disciplines: Solid State Physics,
Dresden, Germany
Official website: www.hzdr.de/hld

The Dresden High Magnetic Field Laboratory (Hochfeld-Magnetlabor Dresden, HLD) in the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) focuses on modern materials research at high magnetic fields. It serves as a research facility for in-house as well as for user projects and provides research opportunities for pulsed magnetic fields up to 90 Tesla for routine operation. A record field close to 92 T has been reached in 2011.[1] The HLD aims at reaching magnetic fields up to the feasibility limit of about 100 Tesla.

Contents

History

In 1999, a proposal was submitted to the Federal Ministry of Education and Research (Germany) and the Saxon Ministry of Science and Art requesting the establishment of the High Magnetic Field Laboratory. After evaluation by the German Council of Science and Humanities basic funding was recommended and in 2003 the construction of the Dresden High Magnetic Field Laboratory started on the site of the HZDR. Investment costs were about € 24.5 million and were shared equally by the federal government and the Free State of Saxony. In December 2004, the Dresden High Magnetic Field Laboratory headed by Prof. Dr. Joachim Wosnitza was founded.

User Program

The HLD is accepting proposals for magnet time in pulsed magnetic fields and hosted users since the beginning of 2007. The proposals are administrated and evaluated in the frame of the EuroMagNET II user program.[2]

Research

Dresden High Magnetic Field Laboratory

As the world's only laboratory, the Dresden High Magnetic Field Laboratory provides access to a magnet with a magnetic flux density of 91.4 Tesla with a pulse duration of 11 milliseconds in a diameter of 16 millimeters. Similarly strong magnetic fields are generated only at the Los Alamos National Laboratory in Los Alamos, USA. In addition, the HLD operates several 70 Tesla coils with pulse durations of 150 milliseconds.

The HLD has an in-house coil development and production program. Because of the high magnetic pressure, a high-strength synthetic fiber has to be wound around the wire layers. The aim is to achieve a field of 100 Tesla over a pulse duration of 10 milliseconds. The required energy of 50 MJ is provided by the world's largest capacitor bank, custom-made for this laboratory.

Primarily, the electronic properties of metallic, semiconducting, superconducting, and magnetic materials are studied at the HLD in high magnetic fields. These include in particular exotic superconductors, strongly correlated electron systems, low-dimensional spin systems, and nanostructures. The pulse durations are sufficient to allow for e.g. resistance, ultrasound, and NMR measurements. Uniquely, the radiation provided by the free-electron lasers (FEL) of the neighboring superconducting electron accelerator ELBE can be used for magneto-optical experiments in the infrared spectral range.

HLD 2.0

In response to the large user demand, the Dresden High Magnetic Field Laboratory (HLD) is being extended. From 2011 to 2013, it will be equipped with a new capacitor bank and six additional magnet cells. The construction of the extension building is well underway.

Cooperation

The HLD cooperates with several research institutions in Dresden:

  • Max Planck Institute for Chemical Physics of Solids
  • Max Planck Institute for the Physics of Complex Systems
  • Technische Universität Dresden
  • Leibniz Institute for Solid State and Materials Research Dresden
  • Leibniz Institute of Polymer Research Dresden

In addition to collaborating with other research institutions in Germany, further European collaborations funded by the European Union exist. The aim of the EU project European Magnetic Field Laboratory (EMFL)[3] is to attract new users to the large research facilities of the participating laboratories within Europe and to develop cooperation in management, infrastructure, and communications. Partners in the EMFL project are: the Dutch "High Magnetic Field Laboratory" in Nijmegen, the French "Laboratoire des Champs Magnétiques Intenses" (LNCMI) in Grenoble and Toulouse and the HLD.

Links

References

  1. ^ World Record: The Highest Magnetic Fields Are Created in Dresden, Press release published by Helmholtz-Zentrum Dresden-Rossendorf on June 28, 2011
  2. ^ Website EuroMagNET II
  3. ^ European Magnetic Field Laboratory (EMFL), www.emfl.eu

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Orders of magnitude (magnetic field) — This page lists examples of magnetic field B in teslas produced by various different sources. They are grouped by orders of magnitude, and each section covers three orders of magnitude, or a factor of one thousand. Note: Traditionally,… …   Wikipedia

  • Institut Hochfeld-Magnetlabor Dresden — 51.062913.9434 Koordinaten: 51° 3′ 46,44″ N, 13° 56′ 36,24″ O Institut Hochfeld Magnetlabor Dresden …   Deutsch Wikipedia

  • Los Alamos National Laboratory — LANL, Luftaufnahme von 1995 …   Deutsch Wikipedia

  • Intensité de champ magnétique — L unité de l intensité d un champ magnétique dans le système international est le tesla (T). On utilise parfois le gauss (G), sachant que : Sommaire 1 Ordre de grandeurs d intensité de champs magnétiques …   Wikipédia en Français

  • Magnetar — For the hedge fund, see Magnetar Capital. Artist s conception of a magnetar, with magnetic field lines A magnetar is a type of neutron star with an extremely powerful magnetic field, the decay of which powers the emission of copious amounts of… …   Wikipedia

  • Maglev — JR Maglev at Yamanashi, Japan test track in November 2005 …   Wikipedia

  • Electron paramagnetic resonance — (EPR) or electron spin resonance (ESR) spectroscopy is a technique for studying chemical species that have one or more unpaired electrons, such as organic and inorganic free radicals or inorganic complexes possessing a transition metal ion. The… …   Wikipedia

  • Magnetismus — ist ein physikalisches Phänomen, das sich als Kraftwirkung zwischen Magneten, magnetisierten bzw. magnetisierbaren Gegenständen und bewegten elektrischen Ladungen wie z. B. in stromdurchflossenen Leitern äußert. Die Vermittlung dieser Kraft… …   Deutsch Wikipedia

  • Abstoßung (Magnetismus) — Dieser Artikel erläutert derzeit (per Weiterleitung) auch den Begriff Magnetfeld. Ergänzende Informationen finden sich im Artikel Magnet. Der Elektromagnetismus wird auch im Artikel Elektrodynamik abgehandelt. Warnung vor magnetischem Feld… …   Deutsch Wikipedia

  • Amagnetisch — Dieser Artikel erläutert derzeit (per Weiterleitung) auch den Begriff Magnetfeld. Ergänzende Informationen finden sich im Artikel Magnet. Der Elektromagnetismus wird auch im Artikel Elektrodynamik abgehandelt. Warnung vor magnetischem Feld… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”