8-demicubic honeycomb

8-demicubic honeycomb
8-demicubic honeycomb
(No image)
Type Uniform 8-space honeycomb
Family Alternated hypercube honeycomb
Schläfli symbol h{4,3,3,3,3,3,3,4}
Coxeter-Dynkin diagram CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
Facets {3,3,3,3,3,3,4}
h{4,3,3,3,3,3,3}
Vertex figure Rectified octacross
Coxeter group {\tilde{B}}_8 [4,3,3,3,3,3,31,1]
{\tilde{D}}_8 [31,1,3,3,3,31,1]

The 8-demicubic honeycomb, or demiocteractic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 8-space. It is constructed as an alternation of the regular 8-cubic honeycomb.

It is composed of two different types of facets. The 8-cubes become alternated into 8-demicubes h{4,3,3,3,3,3,3} Demiocteract ortho petrie.svg and the alternated vertices create 8-orthoplex {3,3,3,3,3,3,4} facets Cross graph 8 Nodes highlighted.svg.

Its vertex arrangement is called the D8 lattice.[1]

Contents

Kissing number

This tessellation represents a dense sphere packing (With a Kissing number of 112, compared to the best possible of 240), with each vertex of this polytope represents the center point for one of the 112 7-spheres, and the central radius, equal to the edge length exactly fits one more 7-sphere.

See also

References

  • Coxeter, H.S.M. Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8
    • pp. 154-156: Partial truncation or alternation, represented by h prefix: h{4,4}={4,4}; h{4,3,4}={31,1,4}, h{4,3,3,4}={3,3,4,3}, ...
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]

Notes

External links