David Sulzer

David Sulzer
David Sulzer
Born November 6, 1956 (1956-11-06)
Nationality American
Fields neuroscience
Institutions Columbia University
Alma mater Carbondale Community High School, E. O. Smith High School, Michigan State University, University of Florida, Columbia University
Doctoral advisor Eric Holtzman
Known for neurotransmission, Parkinson's disease, Huntington's disease, drug dependence, schizophrenia
Notable awards NARSAD, McKnight Foundation, NIH

David Sulzer is a American neuroscientist and Professor at Columbia University Medical Center in the Departments of Psychiatry, Neurology, and Pharmacology. Sulzer's lab investigates the interaction between the synapses of the cerebral cortex and the basal ganglia, including the dopamine system, in habit formation, planning, decision making, and diseases of the system.

Sulzer claims in an interview on NOVA[1] that his interest in understanding mechanisms of addiction stem from crashing a talk by William Burroughs at Naropa Institute in 1980, where Burroughs claimed that new synthetic opiates would be so powerful that users would become addicts with a single dose. In an interview in Nature Medicine on his lab's discovery of the mechanism by which nicotine filters synaptic noise and can focus attention to tasks, he recalls his father's early death due to smoking, saying "if some idiot or drug company is going to twist things around, the only thing that would come out of [this research] that I'd be horrified by is if people used it to advocate smoking. I think it would be a real travesty if that happened."[2]

Contents

Studies on Synapses

The Sulzer laboratory has made contributions to understanding the basal ganglia and dopamine neurons, brain cells of central importance in translating will to action. They have introduced new methods to demonstrate how the synapses work, including the first means to measure the fundamental "quantal" unit of neurotransmitter release from central synapses and the first video means to observe release of neurotransmitter from individual synapses.

The fundamental unit of chemical neurotransmission is due to the "quantal release event", which is due to the fusion of synaptic vesicles with the plasma membrane, which provides for release of the encapsulated neurotransmitter from the synapse. Sulzer and colleagues reported the first direct recordings of quantal neurotransmitter release from brain synapses [3] using an electrochemistry technique known as amperometry using microelectrodes in an approach previously used by Mark Wightman, a chemist at the University of North Carolina, to measure release of adrenaline from adrenal chromaffin cells.

Their experiments showed that the quantal event at dopamine synapses consisted of the release of about 3,000 dopamine molecules in about 100 nanoseconds.[4] Further studies followed that showed that the quantal events could "flicker" due to extremely rapid rapid opening and closing of the a synaptic vesicle fusion pore (at rates as high as 4,000 times a second) with the plasma membrane.[5] This approach also demonstrated that the "size" of the quanta could be altered in numerous ways, for example by the drug L-DOPA, a drug so used to treat Parkinson's Disease.[6]

Sulzer's lab, together with that of Dalibor Sames, a chemist at Columbia University, introduced "fluorescent false neurotransmitters", compounds that are accumulated like genuine neurotransmitters into neurons and synaptic vesicles. The use of fluorescent false neurotransmitters provides the first visual approach to observe neurotransmitter release and reuptake from individual synapses[7] in video. These approaches are enabling important insights into the means by which particular synapses are selected or filtered to allow the brain to change and create new learning and memories.

Sulzer, along with his mentor Stephen Rayport, showed that the neurotransmitter glutamate is released from dopamine neurons,[8][9] an important exception to the Dale's principle that a neuron releases the same transmitter from each of its synapses.

Addictive Drugs

By introducing the "weak base hypothesis" of amphetamine action,[10] means to measure amphetamine's effects on the quantal size of dopamine release,[11] intracellular patch electrochemistry to measure dopamine levels in the cytosol,[12] and providing real-time measurement of dopamine release by reverse transport,[13] Sulzer's lab showed how amphetamine and methamphetamine release dopamine and other neurotransmitters[14][15] and exert their synaptic and clinical effects.

The group extended these findings to show how methamphetamine neurotoxicity occurs, due to dopamine-derived oxidative stress in the cytosol followed by induction of autophagy,[16] and with Nigel Bamford of the University of Washington, how these drugs activate long-term changes in the cortical synapses that project to the striatum[17]: these changes, which they label "chronic postsynaptic depression" and "paradoxical presynaptic potentiation", the latter because methamphetamine selectively normalizes cortical synapses only of animal that previously were exposed to the drugs, appear to last for the life-time of the animal, and may underlie changes in the brain that lead to drug dependence and addiction.

Neurological & Psychiatric Disease

Sulzer and his lab extended their work on basal ganglia synapses to understanding the molecular events that control neurotransmission as well as the neuronal effects that underlie Parkinson's and Huntington's diseases, schizophrenia, drug addiction, and autism. They helped to introduce the now widespread notion that problems in protein and organelle degradation, particularly via autophagy by lysosomes was disturbed in neuronal disease,[18] with early papers showing that this was implicated in the formation of neuromelanin, the pigment of the substantia nigra,[19] in methamphetamine neurotoxicity,[20] and Huntington's disease.[21][22] With Ana Maria Cuervo of Albert Einstein College of Medicine they showed that a cause of Parkinson's disease could be due to an interference with a chaperone-mediated autophagy caused by the protein alpha-synuclein.[23][24]

The Sulzer lab has published over 120 papers on this research. For his work, Sulzer has received awards from the McKnight Foundation, the National Institute on Drug Abuse, and NARSAD. He runs the Basic Neuroscience NIH / NIDA T32 training program for postdoctoral research in basic neuroscience at Columbia. He received a Ph.D. in Biology from Columbia University in 1988.

Entertaining Science Series with Roald Hoffmann

Sulzer co-administers a long-running monthly Science & Art cafe series in Greenwich Village at the Cornelia Street Cafe, "Entertaining Science" with its founder, chemist and writer Roald Hoffmann.

References

  1. ^ [1]
  2. ^ Mandavilli, A. (2004). "Nicotine fix". Nature Medicine 10 (7): 660–661. doi:10.1038/nm0704-660. PMID 15229501.  edit
  3. ^ Pothos, Emmanuel N.; Davila, Viviana; Sulzer, David (1998). "Presynaptic recording of quanta from midbrain dopamine neurons and modulation of the quantal size". The Journal of Neuroscience 18 (11): 4106–18. PMID 9592091. http://www.jneurosci.org/cgi/pmidlookup?view=long&pmid=9592091. 
  4. ^ Pothos, E.; Davila, V.; Sulzer, D. (1998). "Presynaptic recording of quanta from midbrain dopamine neurons and modulation of the quantal size". The Journal of neuroscience : the official journal of the Society for Neuroscience 18 (11): 4106–4118. PMID 9592091.  edit
  5. ^ Staal, R. G. W.; Mosharov, E. V.; Sulzer, D. (2004). "Dopamine neurons release transmitter via a flickering fusion pore". Nature Neuroscience 7 (4): 341–346. doi:10.1038/nn1205. PMID 14990933.  edit
  6. ^ Pothos, E; Desmond, M; Sulzer, D (1996). "L-3,4-dihydroxyphenylalanine increases the quantal size of exocytotic dopamine release in vitro". Journal of neurochemistry 66 (2): 629–36. PMID 8592133. 
  7. ^ Gubernator, N. G.; Zhang, H.; Staal, R. G. W.; Mosharov, E. V.; Pereira, D. B.; Yue, M.; Balsanek, V.; Vadola, P. A. et al. (2009). "Fluorescent False Neurotransmitters Visualize Dopamine Release from Individual Presynaptic Terminals". Science 324 (5933): 1441–4. doi:10.1126/science.1172278. PMID 19423778. 
  8. ^ Sulzer, D.; Joyce, M.; Lin, L.; Geldwert, D.; Haber, S.; Hattori, T.; Rayport, S. (1998). "Dopamine neurons make glutamatergic synapses in vitro". The Journal of neuroscience : the official journal of the Society for Neuroscience 18 (12): 4588–4602. PMID 9614234.  edit
  9. ^ Sulzer, D.; Rayport, S. (2000). "Dale's principle and glutamate corelease from ventral midbrain dopamine neurons". Amino acids 19 (1): 45–52. doi:10.1007/s007260070032. PMID 11026472.  edit
  10. ^ Sulzer, D.; Maidment, N.; Rayport, S. (1993). "Amphetamine and other weak bases act to promote reverse transport of dopamine in ventral midbrain neurons". Journal of neurochemistry 60 (2): 527–535. PMID 8419534.  edit
  11. ^ Sulzer, D.; Chen, T.; Lau, Y.; Kristensen, H.; Rayport, S.; Ewing, A. (1995). "Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport". The Journal of neuroscience : the official journal of the Society for Neuroscience 15 (5 Pt 2): 4102–4108. PMID 7751968.  edit
  12. ^ Mosharov, E.; Gong, L.; Khanna, B.; Sulzer, D.; Lindau, M. (2003). "Intracellular patch electrochemistry: Regulation of cytosolic catecholamines in chromaffin cells". The Journal of neuroscience : the official journal of the Society for Neuroscience 23 (13): 5835–5845. PMID 12843288.  edit
  13. ^ Sulzer, D.; Chen, T.; Lau, Y.; Kristensen, H.; Rayport, S.; Ewing, A. (1995). "Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport". The Journal of neuroscience : the official journal of the Society for Neuroscience 15 (5 Pt 2): 4102–4108. PMID 7751968.  edit
  14. ^ Sulzer, David (2011). "How Addictive Drugs Disrupt Presynaptic Dopamine Neurotransmission". Neuron 69 (4): 628–49. doi:10.1016/j.neuron.2011.02.010. PMC 3065181. PMID 21338876. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3065181. 
  15. ^ Sulzer, David; Sonders, Mark S.; Poulsen, Nathan W.; Galli, Aurelio (2005). "Mechanisms of neurotransmitter release by amphetamines: A review". Progress in Neurobiology 75 (6): 406–33. doi:10.1016/j.pneurobio.2005.04.003. PMID 15955613. 
  16. ^ Larsen, K.; Fon, E.; Hastings, T.; Edwards, R.; Sulzer, D. (2002). "Methamphetamine-induced degeneration of dopaminergic neurons involves autophagy and upregulation of dopamine synthesis". The Journal of neuroscience : the official journal of the Society for Neuroscience 22 (20): 8951–8960. PMID 12388602.  edit
  17. ^ Bamford, N. S.; Zhang, H.; Joyce, J. A.; Scarlis, C. A.; Hanan, W.; Wu, N. P.; André, V. M.; Cohen, R. et al. (2008). "Repeated Exposure to Methamphetamine Causes Long-Lasting Presynaptic Corticostriatal Depression that is Renormalized with Drug Readministration". Neuron 58 (1): 89–103. doi:10.1016/j.neuron.2008.01.033. PMC 2394729. PMID 18400166. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2394729.  edit
  18. ^ Larsen, K.; Sulzer, D. (2002). "Autophagy in neurons: A review". Histology and histopathology 17 (3): 897–908. PMID 12168801.  edit
  19. ^ Sulzer, D.; Bogulavsky, J.; Larsen, K. E.; Behr, G.; Karatekin, E.; Kleinman, M. H.; Turro, N.; Krantz, D. et al. (2000). "Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles". Proceedings of the National Academy of Sciences 97 (22): 11869–11874. doi:10.1073/pnas.97.22.11869.  edit
  20. ^ Larsen, K.; Fon, E.; Hastings, T.; Edwards, R.; Sulzer, D. (2002). "Methamphetamine-induced degeneration of dopaminergic neurons involves autophagy and upregulation of dopamine synthesis". The Journal of neuroscience : the official journal of the Society for Neuroscience 22 (20): 8951–8960. PMID 12388602.  edit
  21. ^ Petersén, A.; Larsen, K.; Behr, G.; Romero, N.; Przedborski, S.; Brundin, P.; Sulzer, D. (2001). "Expanded CAG repeats in exon 1 of the Huntington's disease gene stimulate dopamine-mediated striatal neuron autophagy and degeneration". Human molecular genetics 10 (12): 1243–1254. doi:10.1093/hmg/10.12.1243. PMID 11406606.  edit
  22. ^ Martinez-Vicente, M.; Talloczy, Z.; Wong, E.; Tang, G.; Koga, H.; Kaushik, S.; De Vries, R.; Arias, E. et al. (2010). "Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease". Nature Neuroscience 13 (5): 567–576. doi:10.1038/nn.2528. PMC 2860687. PMID 20383138. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2860687.  edit
  23. ^ Cuervo, A. M.; Stefanis, L.; Fredenburg, R.; Lansbury, P.; Sulzer, D. (2004). "Impaired Degradation of Mutant  -Synuclein by Chaperone-Mediated Autophagy". Science 305 (5688): 1292–1295. doi:10.1126/science.1101738. PMID 15333840.  edit
  24. ^ Martinez-Vicente, M.; Talloczy, Z.; Kaushik, S.; Massey, A. C.; Mazzulli, J.; Mosharov, E. V.; Hodara, R.; Fredenburg, R. et al. (2008). "Dopamine-modified α-synuclein blocks chaperone-mediated autophagy". Journal of Clinical Investigation 118 (2): 777–788. doi:10.1172/JCI32806. PMC 2157565. PMID 18172548. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2157565.  edit

Scientific Articles

scientific articles can be downloaded from http://sulzerlab.org/publications.html

Interviews

Links



Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • SULZER (J. G.) — SULZER JOHANN GEORG (1720 1779) Tout d’abord destiné au clergé, Johann Georg Sulzer, originaire de Winterthur, s’orienta vite vers la philosophie et l’histoire naturelle sous l’influence du chanoine naturaliste Jean Gessner. Il devint instituteur …   Encyclopédie Universelle

  • David Hume — (1766) Porträt von Allan Ramsay David Hume [hju:m] (* 26. Apriljul./ 7. Mai 1711greg.[1] in Edinburgh; † 25. August 1776 ebenda) wa …   Deutsch Wikipedia

  • David B. Hill — David Bennett Hill (* 29. August 1843 in Havana, Schuyler County, New York; † 20. Oktober 1910 in Albany, New York) war ein US amerikanischer Politiker und von 1885 bis 1892 Gouverneur des Bundesstaates New York. Zwischen 1892 und 1897… …   Deutsch Wikipedia

  • David Alexander Paterson — David Paterson (2008) David Alexander Paterson (* 20. Mai 1954 in Brooklyn, New York City) ist ein US amerikanischer Politiker, Demokrat und gegenwärtiger Gouverneur von New York. Er war Senator im Staa …   Deutsch Wikipedia

  • David Paterson — (2008) David Alexander Paterson (* 20. Mai 1954 in Brooklyn, New York City) ist ein US amerikanischer Politiker (Demokratische Partei) und ehemaliger Gouverneur des Bundesstaates New Yor …   Deutsch Wikipedia

  • David B. Hill — David Bennett Hill United States Senator from New York In office January 7, 1892 – March 4, 1897 Preceded by W …   Wikipedia

  • David Gelston — (July 4, 1744 Bridgehampton, Suffolk County, New York August 21, 1828 New York City) was an American merchant and politician. Life He married Phebe Mitchell and their daughter, Phebe Gelston (1771–1836) later married Nicoll Floyd, the son of… …   Wikipedia

  • David R. Floyd-Jones — David Richard Floyd Jones (April 6, 1813 – January 8, 1871) was an American lawyer and politician. Life A descendant of an old Long Island family, he was born at the family mansion on the Fort Neck estate in South Oyster Bay, New York (then… …   Wikipedia

  • David Paterson — This article is about the former Governor of New York. For other spellings and people of the same name, see David Patterson (disambiguation). David Paterson Paterson at the 2008 Tribeca Film Festival 55th Governor of New York …   Wikipedia

  • David Booth — Vereinigte Staaten David Booth Personenbezogene Informationen Geburtsdatum …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”