List of common coordinate transformations

List of common coordinate transformations

This is a list of some of the most commonly used coordinate transformations.

Contents

2-Dimensional

Let (x, y) be the standard Cartesian coordinates, and r and θ the standard polar coordinates.

To Cartesian coordinates from polar coordinates

x=r\,\cos\theta \quad
y=r\,\sin\theta \quad

\frac{\partial(x, y)}{\partial(r, \theta)} =
\begin{pmatrix}
\cos\theta & -r\,\sin\theta  \\
\sin\theta & r\,\cos\theta
\end{pmatrix}

\det{\frac{\partial(x, y)}{\partial(r, \theta)}} =
r

To polar coordinates from Cartesian coordinates

r=\sqrt{x^2 + y^2}
\theta^\prime = \arctan\left|\frac{y}{x}\right|

Note: solving for \theta^\prime returns the resultant angle in the first quadrant (0<\theta<\frac{\pi}{2}). To find θ, one must refer to the original Cartesian coordinate, determine the quadrant in which θ lies (ex (3,-3) [Cartesian] lies in QIV), then use the following to solve for θ:

For \theta^\prime in QI:
\theta = \theta^\prime
For \theta^\prime in QII:
\theta= \pi - \theta^\prime
For \theta^\prime in QIII:
\theta = \pi + \theta^\prime
For \theta^\prime in QIV:
\theta = 2\pi - \theta^\prime

The value for θ must be solved for in this manner because for all values of θ, tanθ is only defined for -\frac{\pi}{2}<\theta<+\frac{\pi}{2}, and is periodic (with period π). This means that the inverse function will only give values in the domain of the function, but restricted to a single period. Hence, the range of the inverse function is only half a full circle.

Note that one can also use

r=\sqrt{x^2 + y^2}
\theta = 2 \arctan \frac{y}{x+r}

To Cartesian coordinates from log-polar coordinates

\begin{cases}x = e^\rho\cos\theta, \\ y = e^\rho\sin\theta.\end{cases}

By using complex numbers (x,y) = x + iy', the transformation can be written as

 x + iy = e^{\rho+i\theta} \,

i.e. it is given by the complex exponential function.

To log-polar coordinates from Cartesian coordinates

\begin{cases} \rho = \log\sqrt{ x^2 + y^2}, \\ \theta = \arctan \frac{y}{x}.  \end{cases}

To Cartesian coordinates from bipolar coordinates


x = a \ \frac{\sinh \tau}{\cosh \tau - \cos \sigma}

y = a \ \frac{\sin \sigma}{\cosh \tau - \cos \sigma}

To Cartesian coordinates from two-center bipolar coordinates[1]


x = \frac{r_1^2-r_2^2}{4c}

y = \pm \frac{1}{4c}\sqrt{16c^2r_1^2-(r_1^2-r_2^2+4c^2)^2}

To polar coordinates from two-center bipolar coordinates


r = \sqrt{\frac{r_1^2+r_2^2-2c^2}{2}}

\theta = \arctan \left[ \sqrt{\frac{8c^2(r_1^2+r_2^2-2c^2)}{r_1^2-r_2^2}-1}\right]

Where 2c is the distance between the poles.

To Cartesian coordinates from Cesàro equation


x = \int \cos \left[\int \kappa(s) \,ds\right] ds

y = \int \sin \left[\int \kappa(s) \,ds\right] ds

Arc length and curvature from Cartesian coordinates

\kappa = \frac{x'y''-y'x''}{(x'^2+y'^2)^{3/2}}

s = \int_a^t \sqrt { x'^2 + y'^2 }\, dt

Arc length and curvature from polar coordinates

\kappa=\frac{r^2+2r'^2-rr''}{(r^2+r'^2)^{3/2}} s = \int_a^\phi \sqrt { 1 + y'^2 }\, d\phi

3-Dimensional

Let (x, y, z) be the standard Cartesian coordinates, and (ρ, θ, φ) the spherical coordinates, with θ the angle measured away from the +Z axis. As φ has a range of 360° the same considerations as in polar (2 dimensional) coordinates apply whenever an arctangent of it is taken. θ has a range of 180°, running from 0° to 180°, and does not pose any problem when calculated from an arccosine, but beware for an arctangent. If, in the alternative definition, θ is chosen to run from −90° to +90°, in opposite direction of the earlier definition, it can be found uniquely from an arcsine, but beware of an arccotangent. In this case in all formulas below all arguments in θ should have sine and cosine exchanged, and as derivative also a plus and minus exchanged.

All divisions by zero result in special cases of being directions along one of the main axes and are in practice most easily solved by observation.

To Cartesian coordinates

From spherical coordinates

{x}=\rho \, \sin\theta \, \cos\phi \quad
{y}=\rho \, \sin\theta \, \sin\phi \quad
{z}=\rho \, \cos\theta \quad

\frac{\partial(x, y, z)}{\partial(\rho, \theta, \phi)} =
\begin{pmatrix}
\sin\theta\cos\phi& \rho\cos\theta\cos\phi & -\rho\sin\theta\sin\phi  \\
\sin\theta\sin\phi & \rho\cos\theta\sin\phi  & \rho\sin\theta\cos\phi   \\
\cos\theta           & -\rho\sin\theta                  & 0
\end{pmatrix}

So for the volume element:


dx\;dy\;dz=\det{\frac{\partial(x, y, z)}{\partial(\rho, \theta, \phi)}} d\rho\;d\theta\;d\phi =
\rho^2 \sin\theta \; d\rho \; d\theta \; d\phi \;

From cylindrical coordinates

{x}={r} \,\cos\theta
{y}={r} \, \sin\theta
{z}={h} \,

\frac{\partial(x, y, z)}{\partial(r, \theta, h)} =
\begin{pmatrix}
\cos\theta & -r\sin\theta & 0 \\
\sin\theta &  r\cos\theta & 0 \\
         0 &            0 & 1
\end{pmatrix}

So for the volume element:


dx\;dy\;dz=\det{\frac{\partial(x, y, z)}{\partial(r, \theta, h)}} dr\;d\theta\;dh =
{r}\; dr \; d\theta \; dh \;

To Spherical coordinates

From Cartesian coordinates

{\rho}=\sqrt{x^2 + y^2 + z^2}
{\phi}=\arctan \left( {\frac{y}{x}} \right)= \arccos \left( \frac{x}{\sqrt{x^2+y^2}}\right) = \arcsin \left( \frac{y}{\sqrt{x^2+y^2}}\right)
{\theta}=\arctan \left( \frac{\sqrt{x^2 + y^2}}{z} \right)=\arccos \left( {\frac{z}{\sqrt{x^2 + y^2 + z^2}}} \right)

\frac{\partial(\rho, \theta, \phi)}{\partial(x, y, z)} =
\begin{pmatrix}
\frac{x}{\rho} &                  \frac{y}{\rho} & \frac{z}{\rho} \\
\frac{xz}{\rho^2\sqrt{x^2+y^2}} & \frac{yz}{\rho^2\sqrt{x^2+y^2}} & -\frac{\sqrt{x^2+y^2}}{\rho^2}\\
\frac{-y}{x^2+y^2} &               \frac{x}{x^2+y^2} & 0\\
\end{pmatrix}

From cylindrical coordinates

{\rho}=\sqrt{r^2+h^2}
{\phi}=\phi \quad
{\theta}=\arctan\frac{r}{h}

\frac{\partial(\rho, \theta, \phi)}{\partial(r, \phi, h)} =
\begin{pmatrix}
\frac{r}{\sqrt{r^2+h^2}} & 0 & \frac{h}{\sqrt{r^2+h^2}} \\
\frac{h}{r^2+h^2} & 0 & \frac{-r}{r^2+h^2} \\
0 & 1 & 0
\end{pmatrix}
 \det \frac{\partial(\rho, \theta, \phi)}{\partial(r, \theta, h)} = \frac{1}{\sqrt{r^2+h^2}}

To cylindrical coordinates

From Cartesian coordinates

r=\sqrt{x^2 + y^2}
\theta=\arctan\frac{y}{x} + \pi u_0(-x) \, \operatorname{sgn} y
h=z \quad

\frac{\partial(r, \theta, h)}{\partial(x, y, z)} =
\begin{pmatrix}
\frac{x}{\sqrt{x^2+y^2}}&\frac{y}{\sqrt{x^2+y^2}}&0\\
\frac{-y}{x^2+y^2}&\frac{x}{x^2+y^2}&0\\
0&0&1
\end{pmatrix}

From spherical coordinates

Note: this section needs updating for consistency with nomenclature. A diagram should be included for this article showing what each variable represents. Usually \theta represents the polar angle for spherical coordinates and \phi the azimuthal angle for cylindrical coordinates. Here the two are mixed and could cause confusion. Someone please update.

 r = \rho \sin \phi \,
 \theta  = \theta \,
 h  = \rho \cos \phi \,

\frac{\partial(r, \theta, h)}{\partial(\rho, \theta, \phi)} =
\begin{pmatrix}
\sin\phi & 0 & \rho\cos\phi  \\
0        & 1 &   0           \\
\cos\phi & 0 & -\rho\sin\phi
\end{pmatrix}
 \det\frac{\partial(r, \theta, h)}{\partial(\rho, \theta, \phi)} = - \rho

Arc length, curvature and torsion from cartesian coordinates

s = \int_0^t \sqrt { x'^2 + y'^2 + z'^2 }\, dt
\kappa=\frac{\sqrt{(z''y'-y''z')^2+(x''z'-z''x')^2+(y''x'-x''y')^2}}{(x'^2+y'^2+z'^2)^{3/2}}
\tau=\frac{z'''(x'y''-y'x'')+z''(x'''y'-x'y''')+z'(x''y'''-x'''y'')}{(x'^2+y'^2+z'^2)(x''^2+y''^2+z''^2)}

References

  1. ^ Weisstein, Eric W.. "Bipolar Coordinates." Treasure Troves. 26 May 1999. Sociology and Anthropology China. 14 February 2007 [1]

Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Coordinate system — For geographical coordinates on Wikipedia, see Wikipedia:WikiProject Geographical coordinates. In geometry, a coordinate system is a system which uses one or more numbers, or coordinates, to uniquely determine the position of a point or other… …   Wikipedia

  • List of mathematics articles (L) — NOTOC L L (complexity) L BFGS L² cohomology L function L game L notation L system L theory L Analyse des Infiniment Petits pour l Intelligence des Lignes Courbes L Hôpital s rule L(R) La Géométrie Labeled graph Labelled enumeration theorem Lack… …   Wikipedia

  • List of paradoxes — This is a list of paradoxes, grouped thematically. Note that many of the listed paradoxes have a clear resolution see Quine s Classification of Paradoxes.Logical, non mathematical* Paradox of entailment: Inconsistent premises always make an… …   Wikipedia

  • Polar coordinate system — Points in the polar coordinate system with pole O and polar axis L. In green, the point with radial coordinate 3 and angular coordinate 60 …   Wikipedia

  • Cylindrical coordinate system — A cylindrical coordinate system with origin O, polar axis A, and longitudinal axis L. The dot is the point with radial distance ρ = 4, angular coordinate φ = 130°, and height z = 4. A cylindrical coordinate system is …   Wikipedia

  • List of important publications in mathematics — One of the oldest surviving fragments of Euclid s Elements, found at Oxyrhynchus and dated to circa AD 100. The diagram accompanies Book II, Proposition 5.[1] This is a list of important publications in mathematics, organized by field. Some… …   Wikipedia

  • HSL and HSV — Fig. 1. HSL (a–d) and HSV (e–h). Above (a, e): cut away 3D models of each. Below: two dimensional plots showing two of a model’s three parameters at once, holding the other constant: cylindrical shells (b, f) of constant saturation, in this case… …   Wikipedia

  • Covariance and contravariance of vectors — For other uses of covariant or contravariant , see covariance and contravariance. In multilinear algebra and tensor analysis, covariance and contravariance describe how the quantitative description of certain geometric or physical entities… …   Wikipedia

  • Relativity priority dispute — Albert Einstein presented the theories of Special Relativity and General Relativity in groundbreaking publications that either contained no formal references to previous literature, or referred only to a small number of his predecessors for… …   Wikipedia

  • Spacetime — For other uses of this term, see Spacetime (disambiguation). Two dimensional analogy of spacetime distortion. Matter changes the geometry of spacetime, this (curved) geometry being interpreted as gravity. White lines do not represent the… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”