Continuous q-Laguerre polynomials
- Continuous q-Laguerre polynomials
-
In mathematics, the continuous q-Laguerre polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.
Definition
The polynomials are given in terms of basic hypergeometric functions and the Pochhammer symbol by
Orthogonality
Recurrence and difference relations
Rodrigues formula
Generating function
Relation to other polynomials
References
- Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96 (2nd ed.), Cambridge University Press, doi:10.2277/0521833574, ISBN 978-0-521-83357-8, MR2128719
- Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR2656096
- Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F. et al., eds., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0521192255, MR2723248, http://dlmf.nist.gov/18
Wikimedia Foundation.
2010.
Look at other dictionaries:
Classical orthogonal polynomials — In mathematics, the classical orthogonal polynomials are the most widely used orthogonal polynomials, and consist of the Hermite polynomials, the Laguerre polynomials, the Jacobi polynomials together with their special cases the ultraspherical… … Wikipedia
Hermite polynomials — In mathematics, the Hermite polynomials are a classical orthogonal polynomial sequence that arise in probability, such as the Edgeworth series; in combinatorics, as an example of an Appell sequence, obeying the umbral calculus; in numerical… … Wikipedia
Orthogonal polynomials — In mathematics, an orthogonal polynomial sequence is a family of polynomials such that any two different polynomials in the sequence are orthogonal to each other under some inner product. The most widely used orthogonal polynomials are the… … Wikipedia
Particle in a spherically symmetric potential — In quantum mechanics, the particle in a spherically symmetric potential describes the dynamics of a particle in a potential which has spherical symmetry. The Hamiltonian for such a system has the form:hat{H} = frac{hat{p}^2}{2m 0} + V(r)where m 0 … Wikipedia
List of real analysis topics — This is a list of articles that are considered real analysis topics. Contents 1 General topics 1.1 Limits 1.2 Sequences and Series 1.2.1 Summation Methods … Wikipedia
Gamma function — For the gamma function of ordinals, see Veblen function. The gamma function along part of the real axis In mathematics, the gamma function (represented by the capital Greek letter Γ) is an extension of the factorial function, with its… … Wikipedia
List of numerical analysis topics — This is a list of numerical analysis topics, by Wikipedia page. Contents 1 General 2 Error 3 Elementary and special functions 4 Numerical linear algebra … Wikipedia
Polynomial — In mathematics, a polynomial (from Greek poly, many and medieval Latin binomium, binomial [1] [2] [3], the word has been introduced, in Latin, by Franciscus Vieta[4]) is an expression of finite length constructed from variables (also known as… … Wikipedia
Vector space — This article is about linear (vector) spaces. For the structure in incidence geometry, see Linear space (geometry). Vector addition and scalar multiplication: a vector v (blue) is added to another vector w (red, upper illustration). Below, w is… … Wikipedia
Algebraic geometry — This Togliatti surface is an algebraic surface of degree five. Algebraic geometry is a branch of mathematics which combines techniques of abstract algebra, especially commutative algebra, with the language and the problems of geometry. It… … Wikipedia