Continuous q-Jacobi polynomials
- Continuous q-Jacobi polynomials
-
In mathematics, the continuous q-Jacobi polynomials P(α,β)
n(x|q), introduced by Askey & Wilson (1985), are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.
Definition
The polynomials are given in terms of basic hypergeometric functions and the Pochhammer symbol by
Orthogonality
Recurrence and difference relations
Rodrigues formula
Generating function
Relation to other polynomials
References
- Askey, Richard; Wilson, James (1985), "Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials", Memoirs of the American Mathematical Society 54 (319): iv+55, ISBN 978-0-8218-2321-7, ISSN 0065-9266, MR783216, http://books.google.com/books?id=9q9o03nD_xsC
- Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96 (2nd ed.), Cambridge University Press, doi:10.2277/0521833574, ISBN 978-0-521-83357-8, MR2128719
- Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR2656096
- Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F. et al., eds., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0521192255, MR2723248, http://dlmf.nist.gov/18
- Rahman, Mizan (1981), "The linearization of the product of continuous q-Jacobi polynomials", Canadian Journal of Mathematics 33 (4): 961–987, doi:10.4153/CJM-1981-076-8, ISSN 0008-414X, MR634153
Wikimedia Foundation.
2010.
Look at other dictionaries:
Orthogonal polynomials — In mathematics, an orthogonal polynomial sequence is a family of polynomials such that any two different polynomials in the sequence are orthogonal to each other under some inner product. The most widely used orthogonal polynomials are the… … Wikipedia
Classical orthogonal polynomials — In mathematics, the classical orthogonal polynomials are the most widely used orthogonal polynomials, and consist of the Hermite polynomials, the Laguerre polynomials, the Jacobi polynomials together with their special cases the ultraspherical… … Wikipedia
Chebyshev polynomials — Not to be confused with discrete Chebyshev polynomials. In mathematics the Chebyshev polynomials, named after Pafnuty Chebyshev,[1] are a sequence of orthogonal polynomials which are related to de Moivre s formula and which can be defined… … Wikipedia
Gauss pseudospectral method — The Gauss Pseudospectral Method (abbreviated GPM ) is a direct transcription method for discretizing a continuous optimal control problem into a nonlinear program (NLP). The Gauss pseudospectral method differs from several other pseudospectral… … Wikipedia
List of real analysis topics — This is a list of articles that are considered real analysis topics. Contents 1 General topics 1.1 Limits 1.2 Sequences and Series 1.2.1 Summation Methods … Wikipedia
List of numerical analysis topics — This is a list of numerical analysis topics, by Wikipedia page. Contents 1 General 2 Error 3 Elementary and special functions 4 Numerical linear algebra … Wikipedia
mathematics — /math euh mat iks/, n. 1. (used with a sing. v.) the systematic treatment of magnitude, relationships between figures and forms, and relations between quantities expressed symbolically. 2. (used with a sing. or pl. v.) mathematical procedures,… … Universalium
Bernoulli number — In mathematics, the Bernoulli numbers Bn are a sequence of rational numbers with deep connections to number theory. They are closely related to the values of the Riemann zeta function at negative integers. There are several conventions for… … Wikipedia
Vector space — This article is about linear (vector) spaces. For the structure in incidence geometry, see Linear space (geometry). Vector addition and scalar multiplication: a vector v (blue) is added to another vector w (red, upper illustration). Below, w is… … Wikipedia
Manifold — For other uses, see Manifold (disambiguation). The sphere (surface of a ball) is a two dimensional manifold since it can be represented by a collection of two dimensional maps. In mathematics (specifically in differential geometry and topology),… … Wikipedia