Peter Swerling

Peter Swerling

Infobox_Scientist
name = Peter Swerling



caption =
birth_date = birth date|1942|8|15
birth_place = New York City, New York
death_date = death date and age|2000|8|25|1929|3|4
death_place = Pacific Palisades, California
residence = United States
nationality = American
field = Mathematics
alma_mater = University of California, Los Angeles
Cornell University
California Institute of Technology

doctoral_advisor = Angus Taylor

Peter Swerling (March 4, 1929August 25, 2000) was one of the most influential RADAR theoreticians in the second half of the 20th century. He is best known for the class of statistically "fluctuating target" scattering models he developed at the RAND Corporation in the early 1950s to characterize the performance of pulsed radar systems, referred to as Swerling Target I, II, III, and IV in the literature of RADAR. He also made significant contributions to the optimal estimation orbits and trajectories of of satellites and missiles, later refined by Rudolph Kalman as the Kalman filter.

Biography

Education

Peter Swerling received a B.S. in Mathematics from the California Institute of Technology in 1947 and a B.A. in Economics from Cornell in 1949. He then attended the University of California, Los Angeles, where he received a M.A. in Mathematics in 1951 and a Ph.D. in Mathematics in 1955. His thesis "Families of Transformations in the Function Spaces H^p" was advised by Angus Taylor, and investigated families of bounded linear transformations in Banach spaces.

Entrepreneurship

In 1966, Peter Swerling founded Technology Service Corporation (TSC). TSC currently has nationwide operations with 2007 revenues approaching $63M. In 1983, he co-founded Swerling Manassee and Smith, Inc., of Canoga Park, California, and served as its president and CEO from 1986 until his retirement in 1998.

werling Targets

Swerling Case 0 Also known as Swerling Case V (5), is no fluctuation.

Swerling Case 1 (or i) Represent constant gain within the hit in the scan but varies from scan to scan with no correlation

Swerling Case 2 (or ii) Represent fluctuation from pulse to pulse as well as scan to scan

The PDF for Case 1 and 2 is

PDF{…} = ( 1 / RCS ) * exp( -{0…..} / RCS)

Where:RCS = mean(Sigma values)

Swerling Case 3 (or iii) Swerling Case 3 is the same as Swerling Case 1 but has “a” dominating reflective surface

Swerling Case 4 (or iv) Swerling Case 4 is the same as Swerling Case 2 but has “a” dominating reflective surface

The PDF for Case 1 and 2 is

PDF{…} = ( (4 * {0…..} ) / RCS^2 ) * exp( (-2 * {0…..}) / RCS)

Where:RCS = mean(Sigma values)

Swerling Case 5 (or v) See Swerling case 0

See also

* Rudolf Kalman
* Kalman filter
* Chi-square target models

External links

* [http://www.siam.org/news/news.php?id=526 Peter Swerling obituary and biography] , SIAM
* [http://www.aip.org/pt/vol-53/iss-11/p75.html Peter Swerling obituary and biography] , American Institute of Physics
* [http://genealogy.math.ndsu.nodak.edu/id.php?id=48924 Mathematics Genealogy Project profile]


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Jo Swerling — (April 8, 1897 October 23, 1964) was an American theatre writer and lyricist and a screenwriter.Born in Bardichov, Russia, Swerling was a refugee of the Czarist regime who grew up on New York City s lower East Side, where he sold newspapers to… …   Wikipedia

  • Chi-squared target models — Swerling models were introduced by Peter Swerling and are used to describe the statistical properties of the radar cross section of complex objects. Contents 1 General Target Model 2 Swerling Target Models 2.1 Swerling I 2 …   Wikipedia

  • Chi-square target models — Swerling models were introduced by Peter Swerling and are used to describe the statistical properties of the radar cross section of complex objects.General Target ModelSwerling target models give the RCS of a given object based on the chi square… …   Wikipedia

  • Kalman filter — Roles of the variables in the Kalman filter. (Larger image here) In statistics, the Kalman filter is a mathematical method named after Rudolf E. Kálmán. Its purpose is to use measurements observed over time, containing noise (random variations)… …   Wikipedia

  • FKE — Filtre de Kalman Pour les articles homonymes, voir Kalman. Le filtre de Kalman est un filtre à réponse impulsionnelle infinie qui estime les états d un système dynamique à partir d une série de mesures incomplètes ou bruitées. Sommaire 1 Exemples …   Wikipédia en Français

  • Filtre De Kalman — Pour les articles homonymes, voir Kalman. Le filtre de Kalman est un filtre à réponse impulsionnelle infinie qui estime les états d un système dynamique à partir d une série de mesures incomplètes ou bruitées. Sommaire 1 Exemples d applications …   Wikipédia en Français

  • Filtre de Kalman — Pour les articles homonymes, voir Kalman. Le filtre de Kalman est un filtre à réponse impulsionnelle infinie qui estime les états d un système dynamique à partir d une série de mesures incomplètes ou bruitées. Sommaire 1 Exemples d applications …   Wikipédia en Français

  • Filtre de kalman — Pour les articles homonymes, voir Kalman. Le filtre de Kalman est un filtre à réponse impulsionnelle infinie qui estime les états d un système dynamique à partir d une série de mesures incomplètes ou bruitées. Sommaire 1 Exemples d applications …   Wikipédia en Français

  • March 4 — << March 2011 >> Su Mo Tu We Th Fr Sa 1 2 3 …   Wikipedia

  • Kalman-Bucy-Filter — Das Kalman Filter ist ein nach seinem Entdecker Rudolf E. Kálmán benannter Satz von mathematischen Gleichungen. Mithilfe dieses Filters sind bei Vorliegen lediglich fehlerbehafteter Beobachtungen Rückschlüsse auf den exakten Zustand von… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”