Seventeen or Bust

Seventeen or Bust

Seventeen or Bust is a distributed computing project started in March 2002 to solve the last seventeen cases in the Sierpinski problem.

Contents

Goals

Seventeen or Bust client

The goal of the project is to prove that 78557 is the smallest Sierpinski number, that is, the least odd k such that k·2n+1 is composite (i.e. not prime) for all n > 0. When the project began, there were only seventeen values of k < 78557 for which the corresponding sequence is not known to contain a prime.

For each of those seventeen values of k, the project is searching for a prime number in the sequence

k·21+1, k·22+1, …, k·2n+1, …

using Proth's theorem, thereby proving that k is not a Sierpinski number. So far, the project has found prime numbers in eleven of the sequences, and is continuing to search in the remaining six. If the goal is reached, the conjectured answer 78557 to the Sierpinski problem will be proven true.

There is also the possibility that some of the remaining sequences contain no prime numbers. In that case, the search would continue forever, searching for prime numbers where none can be found. However, there is some empirical evidence suggesting the conjecture is true.[1]

Every known Sierpinski number k has a small covering set, a finite set of primes with at least one dividing k·2n+1 for each n>0. For example, for the smallest known Sierpinski number, 78557, the covering set is {3,5,7,13,19,37,73}. For another known Sierpinski number, 271129, the covering set is {3,5,7,13,17,241}. None of the remaining sequences has a small covering set (that can be easily tested) so it is suspected that each of them contains primes.

The second generation of the client is based on Prime95, which is used in the Great Internet Mersenne Prime Search.

Prime number discoveries

The Seventeen or Bust set, with data for the eleven prime numbers eliminated to date:[2]

# k n Digits of k·2n+1 Date of discovery Found by
1 4,847 3,321,063 999,744 15 Oct 2005 Richard Hassler
2 5,359 5,054,502 1,521,561 06 Dec 2003 Randy Sundquist
3 10,223 > 17,000,000 (Search in progress)
4 19,249 13,018,586 3,918,990 26 Mar 2007 Konstantin Agafonov
5 21,181 > 17,000,000 (Search in progress)
6 22,699 > 17,000,000 (Search in progress)
7 24,737 > 15,900,000 (Search in progress)
8 27,653 9,167,433 2,759,677 08 Jun 2005 Derek Gordon
9 28,433 7,830,457 2,357,207 30 Dec 2004 Anonymous
10 33,661 7,031,232 2,116,617 13 Oct 2007 Sturle Sunde
11 44,131 995,972 299,823 06 Dec 2002 deviced (nickname)
12 46,157 698,207 210,186 26 Nov 2002 Stephen Gibson
13 54,767 1,337,287 402,569 22 Dec 2002 Peter Coels
14 55,459 > 17,000,000 (Search in progress)
15 65,567 1,013,803 305,190 03 Dec 2002 James Burt
16 67,607 > 17,000,000 (Search in progress)
17 69,109 1,157,446 348,431 07 Dec 2002 Sean DiMichele

As of August 2009 the largest of these primes, 19249·213018586+1, is the largest known prime that is not a Mersenne prime.[3]

Note that each of these numbers has enough digits to fill up a medium-sized novel, at least. The project is presently dividing numbers among its active users, in hope of finding a prime number in each of the six remaining sequences:

k·2n+1, for k = 10223, 21181, 22699, 24737, 55459, 67607.

See also

References

External links


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Seventeen or bust — « Seventeen or Bust » (Dix sept ou arrêt) est un projet de calcul distribué, pour résoudre le problème de Sierpiński. Le but de ce projet est de prouver que 78 557 est le plus petit nombre de Sierpiński. Pour ce faire, tous les nombres… …   Wikipédia en Français

  • Seventeen or Bust — « Seventeen or Bust » (Dix sept ou arrêt) est un projet de calcul distribué, pour résoudre le problème de Sierpiński. Le but de ce projet est de prouver que 78 557 est le plus petit nombre de Sierpiński. Pour ce faire, tous les nombres… …   Wikipédia en Français

  • Seventeen or Bust — («Семнадцать или провал») это проект добровольных вычислений по отысканию простых чисел вида для семнадцати различных значений k, которые позволят доказать, что 78557 является минимальным числом Серпинского. Проект стартовал в марте 2002 года.… …   Википедия

  • Dix-sept ou arrêt — Seventeen or Bust « Seventeen or Bust » (Dix sept ou arrêt) est un projet de calcul distribué, pour résoudre le problème de Sierpiński. Le but de ce projet est de prouver que 78 557 est le plus petit nombre de Sierpiński. Pour ce faire …   Wikipédia en Français

  • Nombres 10 000 a 99 999 — Nombres 10 000 à 99 999 Cet article recense la plupart des nombres qui ont des propriétés remarquables allant de dix mille (10 000) à quatre vingt dix neuf mille neuf cent quatre vingt dix neuf (99 999). Article détaillé : 10 000 (nombre).… …   Wikipédia en Français

  • Nombres 10 000 À 99 999 — Cet article recense la plupart des nombres qui ont des propriétés remarquables allant de dix mille (10 000) à quatre vingt dix neuf mille neuf cent quatre vingt dix neuf (99 999). Article détaillé : 10 000 (nombre). Sommaire 1 Nombres dans l …   Wikipédia en Français

  • Nombres 10 000 à 99 999 — Cet article recense la plupart des nombres qui ont des propriétés remarquables allant de dix mille (10 000) à quatre vingt dix neuf mille neuf cent quatre vingt dix neuf (99 999). Article connexe : 10 000 (nombre). Sommaire 1 Nombres dans l… …   Wikipédia en Français

  • PrimeGrid — PrimeGrid  проект добровольных распределенных вычислений на платформе BOINC, целью которого является поиск различных простых чисел специального вида. Проект стартовал 12 июня 2005 года. По состоянию на 25 марта 2012 года в нём приняли… …   Википедия

  • PrimeGrid — Développeur Rytis Slatkevičius Première version 12 …   Wikipédia en Français

  • Sierpinski number — In number theory, a Sierpinski number is an odd natural number k such that integers of the form k 2 n + 1 are composite (i.e. not prime) for all natural numbers n .In other words, when k is a Sierpinski number, all members of the following set… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”