Sierpinski number

Sierpinski number

In number theory, a Sierpinski number is an odd natural number "k" such that integers of the form "k"2"n" + 1 are composite (i.e. not prime) for all natural numbers "n".

In other words, when "k" is a Sierpinski number, all members of the following set are composite:

:left{,k 2^n + 1 : n inmathbb{N}, ight}.

Numbers in this set with odd k and k < 2n are called Proth numbers.

In 1960 Wacław Sierpiński proved that there are infinitely many odd integers that when used as "k" produce no primes.

The Sierpinski problem

The Sierpinski problem is: "What is the smallest Sierpinski number?"

In 1962, John Selfridge proved that 78,557 is a Sierpinski number; he showed that, when "k"=78,557, all numbers of the form "k"2"n"+1 have a factor in the covering set {3, 5, 7, 13, 19, 37, 73}.

In addition, in 1967, Sierpiński and Selfridge proposed (but could not prove) the conjecture that 78,557 is the smallest Sierpinski number, and thus the answer to the Sierpinski problem.

To show that 78,557 really is the smallest Sierpinski number, one must show that all the odd numbers smaller than 78,557 are "not" Sierpinski numbers. That is, there exists an "n" such that "k"2"n"+1 is prime. [http://primes.utm.edu/links/theory/special_forms/Sierpinski/] As of November 2007, there are only six candidates which have not been eliminated as possible Sierpinski numbers. [http://seventeenorbust.com/stats/rangeStatsEx.mhtml] Seventeen or Bust, a distributed computing project, is testing these remaining numbers.

If the project finds a prime of the right form for all the remaining "k", the Sierpinski problem will be solved.

Current status

As of September 2008, the following "k" have been solved by Seventeen or Bust.

ee also

* Seventeen or Bust
* Riesel number

References

*

External links

* [http://primes.utm.edu/glossary/page.php?sort=SierpinskiNumber Sierpinski number at The Prime Glossary]
* [http://www.prothsearch.net/sierp.html The Sierpinski problem: definition and status]
* [http://mathworld.wolfram.com/SierpinskisCompositeNumberTheorem.html Sierpinski's Composite Number Theorem at MathWorld]
* [http://www.mersenneforum.org/showthread.php?t=2665 The Prime Sierpinski Problem] , a related question.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Sierpiński's constant — is a mathematical constant usually denoted as K . One way of defining it is by limiting the expression::K=lim {n o infty}left [sum {k=1}^{n}{r 2(k)over k} piln n ight] where r 2( k ) is a number of representations of k as a sum of the form a 2 +… …   Wikipedia

  • Sierpiński triangle — The Sierpiński triangle, also called the Sierpiński gasket or the Sierpiński Sieve, is a fractal named after Wacław Sierpiński who described it in 1915. [. W. Sierpiński, Sur une courbe dont tout point est un point de ramification ,C. R. Acad.… …   Wikipedia

  • Sierpiński, Wacław — ▪ Polish mathematician born March 14, 1882, Warsaw, Russian Empire [now in Poland] died October 21, 1969, Warsaw  leading figure in point set topology and one of the founding fathers of the Polish school of mathematics, which flourished between… …   Universalium

  • number game — Introduction       any of various puzzles and games that involve aspects of mathematics.       Mathematical recreations comprise puzzles and games that vary from naive amusements to sophisticated problems, some of which have never been solved.… …   Universalium

  • 70000 (number) — Number number = 70000 range = 10000 100000 cardinal = 70000 ordinal = th ordinal text = seventy thousandth factorization = 2^4 cdot 5^4 cdot 7 bin = 10001000101110000 oct = 210560 hex = 1117070,000 (seventy thousand) is the number that comes… …   Wikipedia

  • Wacław Sierpiński — Wacław Franciszek Sierpiński (March 14 1882 October 21 1969) (pronounced|ˈvaʦwaf fraɲˈʨiʂɛk ɕɛrˈpʲiɲskʲi), a Polish mathematician, was born and died in Warsaw. He was known for outstanding contributions to set theory (research on the axiom of… …   Wikipedia

  • Número de Sierpiński — En matemática, un Número de Sierpinski es un número natural impar k tal que enteros de la forma k2n + 1 son compuestos (no son números primos) para todos los números naturales n. En otras palabras, cuando k es un número de Sierpinski, todos los… …   Wikipedia Español

  • Nombre de Sierpiński — En mathématiques, un nombre de Sierpiński est un nombre positif, impair k tel que les entiers N de la forme sont composés (c est à dire non premiers) pour tous les nombres naturels n. En 1960, Wacław Sierpiński montra qu il existe une infinité de …   Wikipédia en Français

  • Riesel number — In mathematics, a Riesel number is an odd natural number k for which the integers of the form k ·2 n −1 are composite for all natural numbers n .In other words, when k is a Riesel number, all members of the following set are composite::left{,k… …   Wikipedia

  • 5 (number) — This article discusses the number five. For the year 5 AD, see 5. For other uses of 5, see 5 (disambiguation). 5 −1 0 1 2 3 4 5 6 7 8 9 → List of numbers Integers …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”