- Endohedral fullerene
Endohedral fullerenes are
fullerene s that have additional atoms, ions, or clusters enclosed within their inner spheres. The firstlanthanum C60 complex was synthesed in 1985 called La@C60. The@ sign in the name reflects the notion of a small molecule trapped inside a shell. Two types of endohedral complexes exist: endohedral metallofullerenes and non-metal doped fullerenes [ [http://homepage.mac.com/jschrier/endofullerenes_table.html Periodic table of endohedral fullerene atoms] ] .Endohedral metallofullerenes
Doping fullerenes with electropositive metals takes place in an
arc reactor or vialaser evaporation . The metals can betransition metal s likescandium ,yttrium as well aslanthanides likelanthanum andcerium . Also possible are endohedral complexes with elements of thealkaline earth metal s likebarium andstrontium ,alkali metal s likepotassium andtetravalent metals likeuranium ,zirconium andhafnium . The synthesis in the arc reactor is however unspecific. Besides unfilled fullerenes, endohedral metallofullerenes develop with different cage sizes like La@C60 or La@C82 and as different isomer cages. Aside from the dominant presence of mono-metal cages, numerous di-metal endohedral complexes and the tri-metal carbide fullerenes like Sc3C2@C80 were also isolated.In 1998 a discovery drew large attention. With the synthesis of the Sc3N@C80, the inclusion of a molecule fragment in a fullerene cage had succeeded for the first time, . This compound can be prepared by arc-vaporization at temperatures up to 1100 °C of graphite rods packed with
Scandium(III) oxide iron nitride and graphite powder in aK-H generator in a nitrogen atmosphere at 300Torr "Purification of Endohedral Trimetallic Nitride Fullerenes in a Single, Facile Step" Zhongxin Ge, James C. Duchamp, Ting Cai, Harry W. Gibson, and Harry C. DornJ. Am. Chem. Soc. ; 2005; 127(46) pp 16292 - 16298; (Article) DOI: 10.1021/ja055089t [http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/ja055089t Abstract] ] .Endohedral metallofullerenes are characterised by the fact that electrons will transfer from the metal atom to the fullerene cage and that the metal atom takes a position off-center in the cage. The size of the charge transfer is not always simple to determine. In most cases it is between 2 and 3 charge units, in the case of the La2@C80 however it can be even about 6
electron s such as in Sc3N@C80 which is better described as [Sc3N] +6@ [C80] -6. These anionic fullerene cages are very stable molecules and do not have the reactivity associated with ordinary empty fullerenes. They are stable in air up to very high temperatures (600 to 850°C) and thePrato reaction yields only a monoadduct and not multi-adducts as with empty fullerenes.The lack of reactivity in
Diels-Alder reaction s is utilised in a method to purify [C80] -6 compounds from a complex mixture of empty and partly filled fullerenes of different cage size . In this methodMerrifield resin is modified as a cyclopentadienyl resin and used as a solid phase against a mobile phase containing the complex mixture in acolumn chromatography operation. Only very stable fullerenes such as [Sc3N] +6@ [C80] -6 pass through the column unreacted.In Ce2@C80 the metal atoms are found to be "untouchable" and display a three-dimensional random motion [ "Positional Control of Encapsulated Atoms Inside a Fullerene Cage by Exohedral Addition" Michio Yamada, Tsukasa Nakahodo, Takatsugu Wakahara, Takahiro Tsuchiya, Yutaka Maeda, Takeshi Akasaka, Masahiro Kako, Kenji Yoza, Ernst Horn, Naomi Mizorogi, Kaoru Kobayashi, Shigeru Nagase
J. Am. Chem. Soc. ; 2005; 127(42) pp 14570 - 14571 DOI: 10.1021/ja054346r [http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/ja054346r Graphical Abstract] ] . This is evidenced by the presence of only two signals in the 13C-NMR spectrum. It is possible to force the metal atoms to a standstill at the equator as shown byx-ray crystallography when the fullerene is exahedrally functionalized by an electron donation silyl group in a reaction of Ce2@C80 with 1,1,2,2-tetrakis(2,4,6-trimethylphenyl)-1,2-disilirane.Non-metal doped fullerenes
Saunders in 1993 showed the formation of endohedral complexes He@C60 and Ne@C60 when C60 is exposed to a pressure of around 3 bar of the noble gases [cite journal|title=Stable compounds of helium and neon. He@C60 and Ne@C60|author=M. Saunders, H. A. Jiménez-Vázquez, R. J. Cross, and R. J. Poreda|journal=Science|year=1993|volume=259|pages=1428–1430|doi=10.1126/science.259.5100.1428|pmid=17801275] . Under these conditions about one out of every 650 000 C60 cages was doped with a
helium atom. The formation of endohedral complexes withhelium ,neon ,argon ,krypton andxenon as well as numerous adducts of the He@C60 compound was also demonstrated [cite journal|title=Incorporation of helium, neon, argon, krypton, and xenon into fullerenes using high pressure|author=Martin Saunders, Hugo A. Jimenez-Vazquez, R. James Cross, Stanley Mroczkowski, Michael L. Gross, Daryl E. Giblin, and Robert J. Poreda|journal=J. Am. Chem. Soc. |year=1994|volume=116|issue=5|pages=2193–2194|doi=10.1021/ja00084a089] with pressures of 3000 bars and incorporation of up to 0.1% of the noble gases.While
noble gas es are chemically very inert and commonly exist as individual atoms, this is not the case fornitrogen andphosphorus and so the formation of the endohedral complexes N@C60, N@C70 and P@C60 is more surprising. The nitrogen atom is in its electronic initial state (4S3/2) and is therefore to be highly reactive. Nevertheless N@C60 is sufficiently stable that exohedral derivatization from the mono- to the hexa adduct of themalonic acid ethyl ester is possible. In these compounds nocharge transfer of the nitrogen atom in the center to the carbon atoms of the cage takes place. Therefore 13C-couplings, which are observed very easily with the endohedral metallofullerenes, could only be observed in the case of the N@C60 in a high resolution spectrum as shoulders of the central line.The central atom in these endohedral complexes is located in the center of the cage. While other
atomic trap s require complex equipment, e.g.laser cooling ormagnetic trap s, endohedral fullerenes represent an atomic trap that is stable at room temperature and for an arbitrarily long time. Atomic or ion traps are of great interest since particles are present free from (significant) interaction with their environment, allowing unique quantum mechanical phenomena to be explored. For example, the compression of theatomic wave function as a consequence of the packing in the cage could be observed withENDOR spectroscopy . The nitrogen atom can be used as a probe, in order to detect the smallest changes of the electronic structure of its environment.Contrary to the metallo endohedral compounds, these complexes cannot be produced in an arc. Atoms are implanted in the fullerene starting material using
gas discharge (nitrogen and phosphorus complexes) or by direction implantation . Alternatively,endohedral hydrogen fullerene s can be produced by opening and closing a fullerene byorganic chemistry methods.References
Wikimedia Foundation. 2010.