- Proprioceptive Language Learning Method
The Proprioceptive Language Learning Method (Proprioceptive Method) is a method of
language learning which emphasizes simultaneous development of cognitive, motor, neurological, and hearing as all being part of a comprehensive language learning process. Therefore, lesson development is as concerned with the training of the motor and neurological functions of speech as it is with cognitive (memory) functions. It further emphasizes that training of each part of the speech process must be simultaneous. The Proprioceptive Method, therefore, emphasizes spoken language training, and is primarily used by those wanting to perfect their speaking ability in atarget language .An introduction to the proprioceptive Method.
Proprioception is a distinctsensory modality that providesfeedback solely on the status of the body internally. It is the sense that indicates whether the body is moving with required effort, as well as where the various parts of the body are located in relation to each other. [ [http://thalamus.wustl.edu/course/body.html Somatosensory Pathways from the Body] from the Washington University School of Medicine's [http://thalamus.wustl.edu/course/ Neuroscience Tutorial] ] Proprioceptive as specifically used withinspeech therapy is the sense within the organism itself which detects or controls the movement and location of the muscles, tendons, and joints which are used to create speech. The mouth, vocal cords, diaphragm, and lungs incorporate thousands of nerve sensors which the brain uses to control the movement and position of these organs. [Van Riper, Charles, and Erickson, Robert L., 1996. "Speech Correction: An Introduction to Speech Pathology and Audiology". Allyn and Bacon, page 249]The proprioceptive method is modeled after speech pathology practice.
The Proprioceptive Method virtually stands alone as a Second Language Acquisition (SLA) method in that it bases its methodology on a
speech pathology model. [Under the heading Prerequisites for Speech Development, Van Riper and Erickson (Van Riper and Erickson, 1996, pages 77-78) identify six prerequisites for normal speech development in a child. They are: 1) Does the child have a normal vocal tract? 2) Does the child show normal neuromotor maturation? 3) Does the child have a normal auditory system? 4) Does the child have adequate physical and emotional health to support and foster the growth of oral language? 5) Does the child show normal intellectual capacity and cognitive development? 6) Does the child have a nurturing and stimulating environment? When these six prerequisites are satisfactorily met, a child should develop normal speech. However, if the child has not developed normal speech, then one or more of the prerequisites is faulty and must be corrected. For a student to successfully learn a Second Language Acquisition, the instruction method may assume that the same six prerequisites are necessary, though it would not deal with all of them in the applied method. It would not deal with anatomical abnormalities in the vocal tract in 1), or the health and social environment concerns in 4) and 6). However, the pedagogy must be designed to accommodate those prerequisites over which it has control. The language learning method must therefore purposely train the student’s neuromotor senses in 2), utilize the student’s auditory sense as he or she hears both the spoken model and his or her own response as feedback in the target language in 3), and supply the student with the cognitive content required for vocabulary and syntax development in 5). Further, the language learning method must also combine 2), 3), and 5) in such a manner that they are learned simultaneously as they are in First Language Acquisition.] By design, it attempts to simultaneously train motor, neurological, and hearing functions of human speech in conjunction with the cognitive functions of the mind. The Proprioceptive Method, therefore, is not merely a modifiedDirect Method which uses audio-lingual techniques. Rather, it is a spokenlanguage education method which stresses the necessity of purposely training the neurological control and feedback of the mouth (tongue, vocal cords, diaphragm, and lungs) as an integral part of language instruction. It recognizes the mind as being both the control center for the entire neurological process as well as the cognitive center for vocabulary and syntax memory. [Van Riper and Erickson, 1996, page 44] Nonetheless, [http://webh01.ua.ac.be/didascalia/mortality.htm Wilfried Decoo] reminds us that it is unlikely that any language learning method can ever be identified as being entirely new. The Proprioceptive Method may be a new application in Second Language Acquisition, but these same techniques have been used for decades inspeech pathology to correct problems encountered byfirst language (L1) speakers.The Proprioceptive Method stresses that mere knowledge (in the form of vocabulary and grammar memory) is not the sole requirement for spoken language fluency, but that the mind receives
real-time feedback from both hearing and neurological receptors of the mouth and related organs in order to constantly regulate the store of vocabulary and grammar memory in the mind during speech. In regard to feedback during speech, Denes and Pinson say, “In the simple speaker-listener situation . . . there are really two listeners, not one, because the speaker not only speaks, he also listens to his own voice. In listening, he continuously compares the quality of the sounds he produces with the sound qualities he intended to produce and makes the adjustments necessary to match the results with his intentions.” [Denes and Pinson, 1973, page 6] In regard to the use of feedback to regulate speech, these same authors say, “But speech is much more than just a complex motor activity. It involves an acquired knowledge of the language code by which words are associated with objects and concepts. It involves a knowledge of syntax and grammar. It involves the continual interaction of stored information and voluntary conscious activity on the highest levels of the brain. In short, speech differs from most motor activities because it requires much greater efforts of thecentral nervous system . The final results of the speech process, so far as the central nervous system is concerned, are streams of nerve pulses sent to control the muscles of the organs used during speech.” [Denes and Pinson, 1973, page 134]peech is a closed-loop system.
As the name of the Proprioceptive Method indicates, this method views the relationship between the mind and the mouth and related organs during speech as a
closed-loop control system. [Lundquist, page 2-8] However, not all researchers share the view that speech is a closed-loop system. McNeil says, “Research aimed at determining how central nerve cells generate so-called motor programs was initiated. Two schools of motor control originated. The one emphasizes the importance of the central program and views afferent [proprioceptive] input as relatively unimportant (open-loop control), while the other school takes the position that afferent input is of great significance and that movements are under continuous control byfeedback (closed-loop control).” [McNeil, Malcom R. (ed.), 1997, Thieme, New York. "Clinical Management of Sensorimotor Speech Disorders", Chapter 1, "A Theoretical Framework for the Characterization of Pathological Speech Sensorimotor Control" (by Anita Van der Merwe). page 3] The Proprioceptive Method does not appear to take sides on this debate. Rather, it merely says that in order to effectively learn a Second Language Acquisition, all proprioceptive and auditory feedback must occur simultaneously with cognitive learning. [Lundquist, page 8-10] Since the studies documenting both open- and closed-loop speech control is substantial, there is no difficulty in acknowledging that the human mind is capable of using both to produce speech. [There is ample evidence that the human brain uses both open-loop and closed-loop control. For example, see, "Axonal Conduction Time and Human Cerebral Laterality: A Psychobiological Theory", Robert Miller, CRC Press, 1996, page 128 where the author says in regard to eye movement: “Examples of this distinction [between open- and closed-loop control] can be found for very many types of motor action. Rapid reaching or aiming for a target may be mainly open-loop control, especially if vision of the target is prevented once the movement has been initiated. On the other hand, visio-motor tracking of a target moving irregularly or unpredictably must involve closed-loop control.”] [Kornblum S. and Requin, J. (Eds.), "Preparatory states and processes", pages 323-337, Hillsdale, NJ: Erlbaum, Jeannerod, M. (1984). "The Contribution of Open-Loop and Closed-Loop Control Modes in Prehension Movements"]A simple illustration of
open-loop andclosed-loop control in the human mind is in order. If you are watching a distant train moving along its tracks on the opposite side of a river, you are using closed-loop controls as you watch the engine. Your eye and head movement are sending signals to your brain which, in turn, allow you to follow the train by moving your eyes and head. However, if the engine enters a tunnel, you could then switch to an open-loop control where—with nofeedback from your eye and head movement, you could make a close approximation as to when the engine would exit the tunnel. The closed-loop control is dependent on proprioceptive feedback from your eye and muscle movement. The open-loop control is done entirely within your mind with no externalfeedback . [ Robert Miller, 1996, ‘’Axonal Conduction Time and Human Cerebral Laterality: A Psychobiological Theory,’’ page 128, CRC Press.]Van Riper and Erickson say, “Respiration, phonation, resonation, and articulation--all these diverse processes that combine to produce speech are regulated by the nervous system. . . There are at least one hundred muscles that must work together with precise timing. . . and then the whole activity must be monitored "as it occurs"." [Van Riper and Erickson, 1996, page 43] Speech pathology professionals are always mindful of the proprioceptive sense of first language acquisition when correcting defective speech. [ Speech pathologists [http://www.hermanandassociates.com/Speech-Therapy-FAQs/What-is-a-speech-disorder.html| Herman and Associates] state: “There are many reasons why a child may not be speaking as perfectly as he/she could. Proprioceptive difficulties may . . . affect speech production. Proprioceptive difficulties make it difficult for a child to receive enough sensory feedback regarding the appropriate placement of the articulators [tongue, teeth, jaw, etc.] for speech production.”]
The proprioceptive method as it is used.
Having postulated that spoken language requires the training of the neurological responses (including
feedback ) to an equal degree as memory, the Proprioceptive Method makes an important application to the development of spoken language instruction. For optimum effectiveness, it maintains that each of the components ofsecond language acquisition must be encountered simultaneously. It therefore advocates that all memory functions, all motor functions and their neurological receptors, and all feedback from both the mouth and ears must occur at exactly the same moment in time of the instruction. Thus, according to the Proprioceptive Method, "all student participation must be done at full speaking volume". Further, in order to train memory, after initial acquaintance with the sentences being repeated, "all verbal language drills must be done as a response to the narrated sentences which the student must repeat (or answer) entirely apart from reading a text". [Lundquist, page 12-13 ]Other names for the proprioceptive method
The Proprioceptive Method has also been identified as the Proprio-Kinesthetic Method, and more commonly, as the Feedback Training Method. [Lundquist, page 11]
Endnotes
References
* "Axonal Conduction Time and Human Cerebral Laterality: A Psychobiological Theory", Robert Miller, CRC Press, 1996 [http://books.google.com/books?hl=en&lr=&id=xgVwDzlFPo8C&oi=fnd&pg=PR13&dq=%27Axonal+Conduction+Time+and+Human+Cerebral+Laterality:+A+Psychobiological+Theory%22&ots=YAj_CScHmZ&sig=zcwOk7i3aZV6GW12pqpifPiagd4] .
* Kornblum S. and Requin, J. (eds.), "Preparatory states and processes", pages 323-337, Hillsdale, NJ: Erlbaum, Jeannerod, M., 1984. "The Contribution of Open-Loop and Closed-Loop Control Modes in Prehension Movements" [http://books.google.com/books?hl=en&lr=&id=avoeWVSuaSMC&oi=fnd&pg=PR12&dq=%27The+Contribution+of+Open-Loop+and+Closed-Loop+Control+Modes+in+Prehension+Movements%22&ots=bu4OZumnYA&sig=Lq3Q_C-3fjpsovg_CbpvKIRAtxE] .
* Lundquist, Lynn, "Learning Spoken English", public domain [http://www.fspu.uitm.edu.my/images/stories/File/learning%20spoken%20english.pdf] .
* McNeil, Malcom R. (ed.), 1997, Thieme, New York. "Clinical Management of Sensorimotor Speech Disorders", Chapter 1, "A Theoretical Framework for the Characterization of Pathological Speech Sensorimotor Control" (by Anita Van der Merwe) [http://books.google.com/books?id=BgCvQjO6Cg4C&pg=PP1&dq=%27Clinical+Management+of+Sensorimotor+Speech+Disorders%22&sig=dIvRxxac288RtgILK2dzLpwIuMo] .
* "On the Mortality of Language Learning Methods", given as the James L. Barker lecture on November 8th 2001 at Brigham Young University, Wilfried Decoo [http://webh01.ua.ac.be/didascalia/mortality.htm] .
* Van Riper, Charles, and Erickson, Robert L., 1996. "Speech Correction: An Introduction to Speech Pathology and Audiology". Allyn and Bacon.
* "The Speech Chain: The Physics and Biology of Spoken Language’’ by Peter B. Denes and Elliot N. Pinson, 1973, Bell Telephone Laboratories, Anchor Books.
external links
* [http://thalamus.wustl.edu/course/body.html Somatosensory Pathways from the Body] from the Washington University School of Medicine's Neuroscience Tutorial
* [http://www.adpath.com/speech.html] Other techniques used in speech therapy include the motor-kinesthetic approach and biofeedback, which help children know whether the sounds they are producing are faulty or correct
* [http://webh01.ua.ac.be/didascalia/mortality.htm On the Mortality of Language Learning Methods] , given as the James L. Barker lecture on November 8th 2001 at Brigham Young University by Wilfried Decoo.Further reading
* Lass, N. J., McReynolds, L. V., and Northern, J. L. "Handbook on Speech-Language Pathology and Audiology". Philadelphia: B. C. Decker, 1988.
* "The Speech Chain: Physics and Biology of Spoken Language" by Peter B. Denes and Elliot N. Pinson, 1993, W H Freeman & Co, second edition.
Wikimedia Foundation. 2010.