- Eigenvalue, eigenvector and eigenspace
In

mathematics , given alinear transformation , an Audio|De-eigenvector.ogg|**eigenvector**of that linear transformation is a nonzero vector which, when that transformation is applied to it, changes in length, but not direction.For each eigenvector of a linear transformation, there is a corresponding scalar value called an Audio-nohelp|De-eigenvalue.ogg|

**eigenvalue**for that vector, which determines the amount the eigenvector is scaled under the linear transformation. For example, an eigenvalue of +2 means that the eigenvector is doubled in length and points in the same direction. An eigenvalue of +1 means that the eigenvector is unchanged, while an eigenvalue of −1 means that the eigenvector is reversed in direction. An**eigenspace**of a given transformation for a particular eigenvalue is the set (linear span ) of the eigenvectors associated to this eigenvalue, together with the zero vector (which has no direction).In

linear algebra , every linear transformation between finite-dimensional vector spaces can be given by a matrix, which is a rectangular array of numbers arranged in rows and columns. Standard methods for finding**eigenvalues**,**eigenvectors**, and**eigenspaces**of a given matrix are discussed below.These concepts play a major role in several branches of both pure and

applied mathematics — appearing prominently inlinear algebra ,functional analysis , and to a lesser extent innonlinear mathematics.Many kinds of mathematical objects can be treated as vectors: functions, harmonic modes,

quantum states , and frequencies, for example. In these cases, the concept of "direction" loses its ordinary meaning, and is given an abstract definition. Even so, if this abstract "direction" is unchanged by a given linear transformation, the prefix "eigen" is used, as in "eigenfunction ", "eigenmode ", "eigenstate", and "eigenfrequency".**History**Eigenvalues are often introduced in the context of

linear algebra ormatrix theory . Historically, however, they arose in the study ofquadratic form s anddifferential equation s.Euler had also studied the rotational motion of a

rigid body and discovered the importance of the principal axes. As Lagrange realized, the principal axes are the eigenvectors of the inertia matrix. [*See Harvnb|Hawkins|1975|loc=§2*] In the early 19th century, Cauchy saw how their work could be used to classify thequadric surface s, and generalized it to arbitrary dimensions.See Harvnb|Hawkins|1975|loc=§3] Cauchy also coined the term "racine caractéristique" (characteristic root) for what is now called "eigenvalue"; his term survives in "characteristic equation ".See Harvnb|Kline|1972|loc=pp. 807-808]Fourier used the work of Laplace and Lagrange to solve the

heat equation byseparation of variables in his famous 1822 book "Théorie analytique de la chaleur". [*See Harvnb|Kline|1972|loc=p. 673*] Sturm developed Fourier's ideas further and he brought them to the attention of Cauchy, who combined them with his own ideas and arrived at the fact that symmetric matrices have real eigenvalues. This was extended by Hermite in 1855 to what are now called Hermitian matrices. Around the same time, Brioschi proved that the eigenvalues of orthogonal matrices lie on theunit circle , and Clebsch found the corresponding result for skew-symmetric matrices. Finally, Weierstrass clarified an important aspect in thestability theory started by Laplace by realizing that defective matrices can cause instability.In the meantime, Liouville studied eigenvalue problems similar to those of Sturm; the discipline that grew out of their work is now called "

Sturm-Liouville theory ". [*See Harvnb|Kline|1972|loc=pp. 715-716*] Schwarz studied the first eigenvalue ofLaplace's equation on general domains towards the end of the 19th century, while Poincaré studiedPoisson's equation a few years later. [*See Harvnb|Kline|1972|loc=pp. 706-707*]At the start of the 20th century, Hilbert studied the eigenvalues of

integral operator s by viewing the operators as infinite matrices. [*See Harvnb|Kline|1972|loc=p. 1063*] He was the first to use the German word "eigen" to denote eigenvalues and eigenvectors in 1904, though he may have been following a related usage byHelmholtz . "Eigen" can be translated as "own", "peculiar to", "characteristic", or "individual" — emphasizing how important eigenvalues are to defining the unique nature of a specific transformation. For some time, the standard term in English was "proper value", but the more distinctive term "eigenvalue" is standard today. [*See Harvnb|Aldrich|2006*]The first numerical algorithm for computing eigenvalues and eigenvectors appeared in 1929, when Von Mises published the

power method . One of the most popular methods today, theQR algorithm , was proposed independently byJohn G.F. Francis [*J.G.F. Francis, "The QR Transformation, I" (part 1), "The Computer Journal", vol. 4, no. 3, pages 265-271 (1961); "The QR Transformation, II" (part 2), "The Computer Journal", vol. 4, no. 4, pages 332-345 (1962).*] [] and**John G.F. Francis**(1934 - ), devised the “QR transformation” for computing the eigenvalues of matrices. Born in London in 1934, he presently (2007) resides in Hove, England (near Brighton). In 1954 he worked for the National Research Development Corporation (NRDC). In 1955-1956 he attended Cambridge University. He then returned to the NRDC, where he served as assistant to Christopher Strachey. At this time he devised the QR transformation. In 1961 he left the NRDC to work at Ferranti Corporation, Ltd. and then at the University of Sussex. Subsequently, he had positions with various industrial organizations and consultancies. His interests encompassed artificial intelligence, computer languages, and systems engineering. He is currently retired. (See: http://www-sbras.nsc.ru/mathpub/na-net/db/showfile.phtml?v07n34.html#1 .)Vera Kublanovskaya [*Vera N. Kublanovskaya, "On some algorithms for the solution of the complete eigenvalue problem" "USSR Computational Mathematics and Mathematical Physics", vol. 3, pages 637–657 (1961). Also published in: "Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki", vol.1, no. 4, pages 555–570 (1961).*] in 1961. [*See Harvnb|Golub|van Loan|1996|loc=§7.3; Harvnb|Meyer|2000|loc=§7.3*]**Definitions**Linear transformation s of avector space , such as rotation, reflection, stretching, compression, shear or any combination of these, may be visualized by the effect they produce on vectors. In other words, they are vector functions. More formally, in a vector space "L", a vector function "A" is defined if for each vector**x**of "L" there corresponds a unique vector**y**= "A"(**x**) of "L". For the sake of brevity, the parentheses around the vector on which the transformation is acting are often omitted. A vector function "A" is "linear" if it has the following two properties:

*"Additivity": "A"(**x**+**y**) = "A**"x**+ "A**"y**

*"Homogeneity": "A"(α**x**) = α"A**"x**where**x**and**y**are any two vectors of the vector space "L" and α is anyscalar . [*See Harvnb|Beezer|2006|loc=Definition LT on p. 507; Harvnb|Strang|2006|loc=p. 117; Harvnb|Kuttler|2007|loc=Definition 5.3.1 on p. 71; Harvnb|Shilov|1977|loc=Section 4.21 on p. 77; Rowland, Todd and Weisstein, Eric W. [*] Such a function is variously called a "linear transformation", "*http://mathworld.wolfram.com/LinearTransformation.html Linear transformation*] From MathWorld − A Wolfram Web Resourcelinear operator ", or "linearendomorphism " on the space "L".The key equation in this definition is the eigenvalue equation, "A

**"x**= λ**x**. Most vectors**x**will not satisfy such an equation. A typical vector**x**changes direction when acted on by "A", so that "A**"x**is not a multiple of**x**. This means that only certain special vectors**x**are eigenvectors, and only certain special numbers λ are eigenvalues. Of course, if "A" is a multiple of theidentity matrix , then no vector changes direction, and all non-zero vectors are eigenvectors.The requirement that the eigenvector be non-zero is imposed because the equation "A

**"0**= λ**0**holds for every "A" and every λ. Since the equation is always trivially true, it is not an interesting case. In contrast, an eigenvalue can be zero in a nontrivial way. Each eigenvector is associated with a specific eigenvalue. One eigenvalue can be associated with several or even with infinite number of eigenvectors.Geometrically (Fig. 2), the eigenvalue equation means that under the transformation "A" eigenvectors experience only changes in magnitude and sign — the direction of "A

**"x**is the same as that of**x**. The eigenvalue λ is simply the amount of "stretch" or "shrink" to which a vector is subjected when transformed by "A". If λ = 1, the vector remains unchanged (unaffected by the transformation). A transformation "I" under which a vector**x**remains unchanged, "I**"x**=**x**, is defined asidentity transformation . If λ = –1, the vector flips to the opposite direction (rotates to 180°); this is defined as reflection.If

**x**is an eigenvector of the linear transformation "A" with eigenvalue λ, then any scalar multiple α**x**is also an eigenvector of "A" with the same eigenvalue. Similarly if more than one eigenvector share the same eigenvalue λ, any linear combination of these eigenvectors will itself be an eigenvector with eigenvalue λ. [*For a proof of this lemma, see Harvnb|Shilov|1977|loc=p. 109, and*] . Together with the zero vector, the eigenvectors of**A**with the same eigenvalue form alinear subspace of the vector space called an "eigenspace".The eigenvectors corresponding to different eigenvalues are linearly independentFor a proof of this lemma, see Harvnb|Roman|2008|loc=Theorem 8.2 on p. 186; Harvnb|Shilov|1977|loc=p. 109; Harvnb|Hefferon|2001|loc=p. 364; Harvnb|Beezer|2006|loc=Theorem EDELI on p. 469; and ] meaning, in particular, that in an "n"-dimensional space the linear transformation "A" cannot have more than "n" eigenvectors with different eigenvalues. [

*See Harvnb|Shilov|1977|loc=p. 109*]If a basis is defined in vector space, all vectors can be expressed in terms of components. For finite dimensional vector spaces with dimension "n", linear transformations can be represented with "n" × "n" square matrices. Conversely, every such square matrix corresponds to a linear transformation for a given basis. Thus, in a two-dimensional vector space "R"

^{2}fitted withstandard basis , the eigenvector equation for a linear transformation "A" can be written in the following matrix representation:: $egin\{bmatrix\}\; a\_\{11\}\; a\_\{12\}\; \backslash \; a\_\{21\}\; a\_\{22\}\; end\{bmatrix\}\; egin\{bmatrix\}\; x\; \backslash \; y\; end\{bmatrix\}\; =\; lambda\; egin\{bmatrix\}\; x\; \backslash \; y\; end\{bmatrix\},$

where the juxtaposition of matrices means

matrix multiplication .**Left and right eigenvectors**The word eigenvector formally refers to the

**right eigenvector**$x\_R$. It is defined by the above eigenvalue equation $A\; x\_R\; =\; lambda\_R\; x\_R$, and is the most commonly used eigenvector. However, the**left eigenvector**$x\_L$ exists as well, and is defined by $x\_L\; A\; =\; lambda\_L\; x\_L$.**Characteristic equation**When a transformation is represented by a square matrix "A", the eigenvalue equation can be expressed as: $A\; mathbf\{x\}\; -\; lambda\; I\; mathbf\{x\}\; =\; mathbf\{0\}.$This can be rearranged to: $(A\; -\; lambda\; I)\; mathbf\{x\}\; =\; mathbf\{0\}.$If there exists an inverse: $(A\; -\; lambda\; I)^\{-1\}\; ,$then both sides can be multiplied by the inverse to obtain the trivial solution:

**x**=**0**. Thus we require there to be no inverse by assuming fromlinear algebra that thedeterminant equals zero:: $det(A\; -\; lambda\; I)\; =\; 0.$The determinant requirement is called the "

characteristic equation " (less often,secular equation ) of "A", and the left-hand side is called the "characteristic polynomial ". When expanded, this gives apolynomial equation for $lambda$. The eigenvector**x**or its components are not present in the characteristic equation.**Example**The matrix

: $egin\{bmatrix\}\; 2\; 1\backslash 1\; 2\; end\{bmatrix\}$

defines a linear transformation of the real plane. The eigenvalues of this transformation are given by the characteristic equation

: $detegin\{bmatrix\}\; 2-lambda\; 1\backslash 1\; 2-lambda\; end\{bmatrix\}\; =\; (2-lambda)^2\; -\; 1\; =\; 0.$

The roots of this equation (i.e. the values of $lambda$ for which the equation holds) are $lambda=1$ and $lambda=3$. Having found the eigenvalues, it is possible to find the eigenvectors. Considering first the eigenvalue $lambda=3$, we have

:$egin\{bmatrix\}\; 2\; 1\backslash 1\; 2\; end\{bmatrix\}egin\{bmatrix\}x\backslash yend\{bmatrix\}\; =\; 3\; egin\{bmatrix\}x\backslash yend\{bmatrix\}.$

Both rows of this matrix equation reduce to the single linear equation $x=y$. To find an eigenvector, we are free to choose any value for x, so by picking x=1 and setting y=x, we find the eigenvector to be

:$egin\{bmatrix\}1\backslash 1end\{bmatrix\}.$

We can check this is an eigenvector by checking that :$egin\{bmatrix\}21\backslash 12end\{bmatrix\}egin\{bmatrix\}1\backslash 1end\{bmatrix\}\; =\; egin\{bmatrix\}3\backslash 3end\{bmatrix\}.$ For the eigenvalue $lambda=1,$ a similar process leads to the equation $x=-y$, and hence the eigenvector is given by

:$egin\{bmatrix\}1\backslash -1end\{bmatrix\}.$

The complexity of the problem for finding roots/eigenvalues of the characteristic polynomial increases rapidly with increasing the degree of the polynomial (the dimension of the vector space). There are exact solutions for dimensions below 5, but for higher dimensions there are generally no exact solutions and one has to resort to numerical methods to find them approximately. For large symmetric sparse matrices,

Lanczos algorithm is used to compute eigenvalues and eigenvectors.**Existence and multiplicity of eigenvalues**For transformations on real vector spaces, the coefficients of the characteristic polynomial are all real. However, the roots are not necessarily real; they may well be complex numbers, or a mixture of real and complex numbers. For example, a matrix representing a planar rotation of 45 degrees will not leave any non-zero vector pointing in the same direction. Over a complex vector space, the

fundamental theorem of algebra guarantees that the characteristic polynomial has at least one root, and thus the linear transformation has at least one eigenvalue.As well as distinct roots, the characteristic equation may also have repeated roots. However, having repeated roots does not imply there are multiple distinct (i.e.

linearly independent ) eigenvectors with that eigenvalue. The "algebraicmultiplicity " of an eigenvalue is defined as the multiplicity of the corresponding root of the characteristic polynomial. The geometric multiplicity of an eigenvalue is defined as the dimension of the associated eigenspace, i.e. number of linearly independent eigenvectors with that eigenvalue.Over a complex space, the sum of the algebraic multiplicities will equal the dimension of the vector space, but the sum of the geometric multiplicities may be smaller. In a sense, then it is possible that there may not be sufficient eigenvectors to span the entire space. This is intimately related to the question of whether a given matrix may be diagonalized by a suitable choice of coordinates.

**Shear**Shear in the plane is a transformation in which all points along a given line remain fixed while other points are shifted parallel to that line by a distance proportional to their perpendicular distance from the line. [

*Definition according to Weisstein, Eric W. [*] Shearing a plane figure does not change its area. Shear can be horizontal − along the "X" axis, or vertical − along the "Y" axis. In horizontal shear (see figure), a point "P" of the plane moves parallel to the "X" axis to the place "P' " so that its coordinate "y" does not change while the "x" coordinate increments to become "x' " = "x" + "k" "y", where "k" is called the shear factor.*http://mathworld.wolfram.com/Shear.html Shear*] From MathWorld − A Wolfram Web ResourceThe matrix of a horizontal shear transformation is $egin\{bmatrix\}1\; k\backslash \; 0\; 1end\{bmatrix\}$. The characteristic equation is λ

^{2}− 2 λ + 1 = (1 − λ)^{2}= 0 which has a single, repeated root λ = 1. Therefore, the eigenvalue λ = 1 has algebraic multiplicity 2. The eigenvector(s) are found as solutions of: $egin\{bmatrix\}1\; -\; 1\; -k\backslash \; 0\; 1\; -\; 1\; end\{bmatrix\}egin\{bmatrix\}x\backslash \; yend\{bmatrix\}\; =\; egin\{bmatrix\}0\; -k\backslash \; 0\; 0\; end\{bmatrix\}egin\{bmatrix\}x\backslash \; yend\{bmatrix\}\; =\; -ky\; =\; 0.$The last equation is equivalent to "y" = 0, which is a straight line along the "x" axis. This line represents the one-dimensional eigenspace. In the case of shear the algebraic multiplicity of the eigenvalue (2) is greater than its geometric multiplicity (1, the dimension of the eigenspace). The eigenvector is a vector along the "x" axis. The case of vertical shear with transformation matrix $egin\{bmatrix\}1\; 0\backslash \; k\; 1end\{bmatrix\}$ is dealt with in a similar way; the eigenvector in vertical shear is along the "y" axis. Applying repeatedly the shear transformation changes the direction of any vector in the plane closer and closer to the direction of the eigenvector.**Uniform scaling and reflection**As a one-dimensional vector space, consider a rubber string tied to unmoving support in one end, such as that on a child's sling. Pulling the string away from the point of attachment stretches it and elongates it by some scaling factor λ which is a real number. Each vector on the string is stretched equally, with the same scaling factor λ, and although elongated, it preserves its original direction. For a two-dimensional vector space, consider a rubber sheet stretched equally in all directions such as a small area of the surface of an inflating balloon (Fig. 3). All vectors originating at the fixed point on the balloon surface (the origin) are stretched equally with the same scaling factor λ. This transformation in two-dimensions is described by the 2×2 square matrix:

: $A\; mathbf\{x\}\; =\; egin\{bmatrix\}lambda\; 0\backslash 0\; lambdaend\{bmatrix\}\; egin\{bmatrix\}\; x\; \backslash \; y\; end\{bmatrix\}\; =\; egin\{bmatrix\}lambda\; cdot\; x\; +\; 0\; cdot\; y\; \backslash 0\; cdot\; x\; +\; lambda\; cdot\; yend\{bmatrix\}\; =\; lambda\; egin\{bmatrix\}\; x\; \backslash \; y\; end\{bmatrix\}\; =\; lambda\; mathbf\{x\}.$

Expressed in words, the transformation is equivalent to multiplying the length of "any" vector by λ while preserving its original direction. Since the vector taken was arbitrary, every non-zero vector in the vector space is an eigenvector. Whether the transformation is stretching (elongation, extension, inflation), or shrinking (compression, deflation) depends on the scaling factor: if λ > 1, it is stretching; if λ < 1, it is shrinking. Negative values of λ correspond to a reversal of direction, followed by a stretch or a shrink, depending on the absolute value of λ.

**Unequal scaling**For a slightly more complicated example, consider a sheet that is stretched unequally in two perpendicular directions along the coordinate axes, or, similarly, stretched in one direction, and shrunk in the other direction. In this case, there are two different scaling factors: "k"

_{1}for the scaling in direction "x", and "k"_{2}for the scaling in direction "y". The transformation matrix is $egin\{bmatrix\}k\_1\; 0\backslash 0\; k\_2end\{bmatrix\}$, and the characteristic equation is $(k\_1-lambda)(k\_2-lambda)\; =\; 0$. The eigenvalues, obtained as roots of this equation are λ_{1}= "k"_{1}, and λ_{2}= "k"_{2}which means, as expected, that the two eigenvalues are the scaling factors in the two directions. Plugging "k"_{1}back in the eigenvalue equation gives one of the eigenvectors:: $egin\{bmatrix\}0\; 0\backslash 0\; k\_2\; -\; k\_1end\{bmatrix\}\; egin\{bmatrix\}\; x\; \backslash \; yend\{bmatrix\}\; =\; egin\{bmatrix\}0\backslash 0end\{bmatrix\}$ or, more simply, $y=0$.Thus, the eigenspace is the "x"-axis. Similarly, substituting $lambda=k\_2$ shows that the corresponding eigenspace is the "y"-axis. In this case, both eigenvalues have algebraic and geometric multiplicities equal to 1. If a given eigenvalue is greater than 1, the vectors are stretched in the direction of the corresponding eigenvector; if less than 1, they are shrunken in that direction. Negative eigenvalues correspond to reflections followed by a stretch or shrink. In general, matrices that are

diagonalizable over the real numbers represent scalings and reflections: the eigenvalues represent the scaling factors (and appear as the diagonal terms), and the eigenvectors are the directions of the scalings.The figure shows the case where $k\_1>1$ and $1>k\_2>0$. The rubber sheet is stretched along the "x" axis and simultaneously shrunk along the "y" axis. After repeatedly applying this transformation of stretching/shrinking many times, almost any vector on the surface of the rubber sheet will be oriented closer and closer to the direction of the "x" axis (the direction of stretching). The exceptions are vectors along the "y"-axis, which will gradually shrink away to nothing.

**Rotation**A rotation in a plane is a transformation that describes motion of a vector, plane, coordinates, etc., around a fixed point. Clearly, for rotations other than through 0° and 180°, every vector in the real plane will have its direction changed, and thus there cannot be any eigenvectors. But this is not necessarily true if we consider the same matrix over a complex vector space.

A

counterclockwise rotation in the horizontal plane about the origin at an angle φ is represented by the matrix: $mathbf\{R\}\; =\; egin\{bmatrix\}\; cos\; varphi\; -sin\; varphi\; \backslash \; sin\; varphi\; cos\; varphi\; end\{bmatrix\}.$

The characteristic equation of

**R**is λ^{2}− 2λ cos φ + 1 = 0. This quadratic equation has adiscriminant "D" = 4 (cos^{2}φ − 1) = − 4 sin^{2}φ which is a negative number whenever φ is not equal a multiple of 180°. A rotation of 0°, 360°, … is just the identity transformation, (a uniform scaling by +1) while a rotation of 180°, 540°, …, is a reflection (uniform scaling by -1). Otherwise, as expected, there are no real eigenvalues or eigenvectors for rotation in the plane.**Rotation matrices on complex vector spaces**The characteristic equation has two complex roots λ

_{1}and λ_{2}. If we choose to think of the rotation matrix as a linear operator on the complex two dimensional, we can consider these complex eigenvalues. The roots are complex conjugates of each other: λ_{1,2}= cos φ ± "i" sin φ = "e"^{ ± "i"φ}, each with an algebraic multiplicity equal to 1, where "i" is the imaginary unit.The first eigenvector is found by substituting the first eigenvalue, λ

_{1}, back in the eigenvalue equation:: $egin\{bmatrix\}\; cos\; varphi\; -\; lambda\_1\; -sin\; varphi\; \backslash \; sin\; varphi\; cos\; varphi\; -\; lambda\_1\; end\{bmatrix\}\; egin\{bmatrix\}\; x\; \backslash \; y\; end\{bmatrix\}\; =\; egin\{bmatrix\}\; -\; i\; sin\; varphi\; -sin\; varphi\; \backslash \; sin\; varphi\; -\; i\; sin\; varphi\; end\{bmatrix\}\; egin\{bmatrix\}\; x\; \backslash \; y\; end\{bmatrix\}\; =\; egin\{bmatrix\}\; 0\; \backslash \; 0\; end\{bmatrix\}.$

The last equation is equivalent to the single equation $x=iy$, and again we are free to set $x=1$ to give the eigenvector

:$egin\{bmatrix\}1\backslash -iend\{bmatrix\}.$

Similarly, substituting in the second eigenvalue gives the single equation $x=-iy$ and so the eigenvector is given by

:$egin\{bmatrix\}1\backslash iend\{bmatrix\}.$

Although not diagonalizable over the reals, the rotation matrix is diagonalizable over the complex numbers, and again the eigenvalues appear on the diagonal. Thus rotation matrices acting on complex spaces can be thought of as scaling matrices, with complex scaling factors.

**Infinite-dimensional spaces and spectral theory**If the vector space is an infinite dimensional

Banach space , the notion of eigenvalues can be generalized to the concept of spectrum. The spectrum is the set of scalars λ for which ("T" − λ)^{−1}is not defined; that is, such that "T" − λ has no bounded inverse.Clearly if λ is an eigenvalue of "T", λ is in the spectrum of "T". In general, the converse is not true. There are operators on Hilbert or

Banach space s which have no eigenvectors at all. This can be seen in the following example. Thebilateral shift on the Hilbert space "" ^{2}(**Z**) (that is, the space of all sequences of scalars … "a"_{−1}, "a"_{0}, "a"_{1}, "a"_{2}, … such that: $cdots\; +\; |a\_\{-1\}|^2\; +\; |a\_0|^2\; +\; |a\_1|^2\; +\; |a\_2|^2\; +\; cdots$

converges) has no eigenvalue but does have spectral values.

In infinite-dimensional spaces, the spectrum of a

bounded operator is always nonempty. This is also true for an unboundedself adjoint operator . Via itsspectral measure s, the spectrum of any self adjoint operator, bounded or otherwise, can be decomposed into absolutely continuous, pure point, and singular parts. (See Decomposition of spectrum.)The

hydrogen atom is an example where both types of spectra appear. The eigenfunctions of the hydrogen atom Hamiltonian are called eigenstates and are grouped into two categories. Thebound state s of the hydrogen atom correspond to the discrete part of the spectrum (they have a discrete set of eigenvalues which can be computed byRydberg formula ) while theionization processes are described by the continuous part (the energy of the collision/ionization is not quantified).**Eigenfunctions**A common example of such maps on infinite dimensional spaces are the action of

differential operator s onfunction space s. As an example, on the space of infinitelydifferentiable function s, the process ofdifferentiation defines a linear operator since: $displaystylefrac\{d\}\{dt\}(af+bg)\; =\; a\; frac\{df\}\{dt\}\; +\; b\; frac\{dg\}\{dt\},$

where "f"("t") and "g"("t") are

differentiable functions, and "a" and "b" areconstant s).The eigenvalue equation for linear

differential operators is then a set of one or moredifferential equation s. The eigenvectors are commonly called**eigenfunctions**. The most simple case is the eigenvalue equation for differentiation of a real valued function by a single real variable. In this case, the eigenvalue equation becomes the linear differential equation: $displaystylefrac\{d\}\{dx\}\; f(x)\; =\; lambda\; f(x).$

Here "λ" is the eigenvalue associated with the function, "f(x)". This eigenvalue equation has a solution for all values of "λ". If "λ" is zero, the solution is

: $f(x)\; =\; A,,$

where "A" is any constant; if "λ" is non-zero, the solution is the

exponential function : $f(x)\; =\; Ae^\{lambda\; x\}.$

If we expand our horizons to complex valued functions, the value of "λ" can be any

complex number . The spectrum of "d/dt" is therefore the wholecomplex plane . This is an example of acontinuous spectrum .**Waves on a string**The displacement, $h(x,t)$, of a stressed rope fixed at both ends, like the

vibrating string s of astring instrument , satisfies thewave equation : $frac\{partial^2\; h\}\{partial\; t^2\}\; =\; c^2frac\{partial^2\; h\}\{partial\; x^2\},$

which is a linear

partial differential equation , where "c" is the constant wave speed. The normal method of solving such an equation isseparation of variables . If we assume that "h" can be written as the product of the form "X(x)T(t)", we can form a pair of ordinary differential equations::$X"=-frac\{omega^2\}\{c^2\}X$ and $T"=-omega^2\; T.$

Each of these is an eigenvalue equation (the unfamiliar form of the eigenvalue is chosen merely for convenience). For any values of the eigenvalues, the eigenfunctions are given by

:$X\; =\; sin(frac\{omega\; x\}\{c\}\; +\; phi)$ and $T\; =\; sin(omega\; t\; +\; psi).$

If we impose boundary conditions -- that the ends of the string are fixed with "X(x)=0" at "x=0" and "x=L", for example -- we can constrain the eigenvalues. For those

boundary conditions , we find:$sin(phi)\; =\; 0$, and so the phase angle $phi=0$

and

:$sinleft(frac\{omega\; L\}\{c\}\; ight)\; =\; 0.$

Thus, the constant $omega$ is constrained to take one of the values $omega\_n\; =\; frac\{ncpi\}\{L\}$, where "n" is any integer. Thus the clamped string supports a family of standing waves of the form

:$h(x,t)\; =\; sin(npi\; x/L)sin(omega\_n\; t).$

From the point of view of our musical instrument, the frequency $omega\_n$ is the frequency of the "n"th

harmonic overtone .**Eigendecomposition**The

spectral theorem for matrices can be stated as follows. Let**A**be a square "n" × "n" matrix. Let**q**_{1}...**q**_{"k"}be an eigenvector basis, i.e. an indexed set of "k"linearly independent eigenvectors, where "k" is the dimension of the space spanned by the eigenvectors of**A**. If "k" = "n", then**A**can be written: $mathbf\{A\}=mathbf\{Q\}mathbf\{Lambda\}mathbf\{Q\}^\{-1\}$

where

**Q**is the square "n" × "n" matrix whose "i"-th column is the basis eigenvector**q**_{"i"}of**A**and**Λ**is thediagonal matrix whose diagonal elements are the corresponding eigenvalues, i.e.**Λ**_{"ii"}= λ_{"i"}.**Applications****chrödinger equation**An example of an eigenvalue equation where the transformation "T" is represented in terms of a differential operator is the time-independent

Schrödinger equation inquantum mechanics :: $Hpsi\_E\; =\; Epsi\_E\; ,$

where "H", the Hamiltonian, is a second-order

differential operator and $psi\_E$, thewavefunction , is one of its eigenfunctions corresponding to the eigenvalue "E", interpreted as itsenergy .However, in the case where one is interested only in the

bound state solutions of the Schrödinger equation, one looks for $psi\_E$ within the space ofsquare integrable functions. Since this space is aHilbert space with a well-definedscalar product , one can introduce a basis set in which $psi\_E$ and "H" can be represented as a one-dimensional array and a matrix respectively. This allows one to represent the Schrödinger equation in a matrix form. (Fig. 8 presents the lowest eigenfunctions of theHydrogen atom Hamiltonian.)The

Dirac notation is often used in this context. A vector, which represents a state of the system, in the Hilbert space of square integrable functions is represented by $|Psi\_E\; angle$. In this notation, the Schrödinger equation is:: $H|Psi\_E\; angle\; =\; E|Psi\_E\; angle$

where $|Psi\_E\; angle$ is an

**eigenstate**of "H". It is aself adjoint operator , the infinite dimensional analog of Hermitian matrices ("seeObservable "). As in the matrix case, in the equation above $H|Psi\_E\; angle$ is understood to be the vector obtained by application of the transformation "H" to $|Psi\_E\; angle$.**Molecular orbitals**In

quantum mechanics , and in particular in atomic andmolecular physics , within theHartree-Fock theory, the atomic andmolecular orbital s can be defined by the eigenvectors of theFock operator . The corresponding eigenvalues are interpreted asionization potential s viaKoopmans' theorem . In this case, the term eigenvector is used in a somewhat more general meaning, since the Fock operator is explicitly dependent on the orbitals and their eigenvalues. If one wants to underline this aspect one speaks of nonlinear eigenvalue problem. Such equations are usually solved by aniteration procedure, called in this caseself-consistent field method. Inquantum chemistry , one often represents the Hartree-Fock equation in a non-orthogonal basis set. This particular representation is a generalized eigenvalue problem calledRoothaan equations .**Geology and glaciology**In

geology , especially in the study ofglacial till , eigenvectors and eigenvalues are used as a method by which a mass of information of a clast fabric's constituents' orientation and dip can be summarized in a 3-D space by six numbers. In the field, a geologist may collect such data for hundreds or thousands ofclasts in a soil sample, which can only be compared graphically such as in a Tri-Plot (Sneed and Folk) diagram [*Graham, D., and Midgley, N., 2000. Earth Surface Processes and Landforms (25) pp 1473-1477*] , [*Sneed ED, Folk RL. 1958. Pebbles in the lower Colorado River, Texas, a study of particle morphogenesis. Journal of Geology 66(2): 114–150*] , or as a Stereonet on a Wulff Net [*[*] . The output for the orientation tensor is in the three orthogonal (perpendicular) axes of space. Eigenvectors output from programs such as Stereo32 [*http://dx.doi.org/10.1016/S0098-3004(97)00122-2 GIS-stereoplot: an interactive stereonet plotting module for ArcView 3.0 geographic information system*]*[*] are in the order "E"*http://www.ruhr-uni-bochum.de/hardrock/downloads.htm Stereo32*]_{1}≥ "E"_{2}≥ "E"_{3}, with "E"_{1}being the primary orientation of clast orientation/dip, "E"_{2}being the secondary and "E"_{3}being the tertiary, in terms of strength. The clast orientation is defined as the eigenvector, on a compass rose of 360°. Dip is measured as the eigenvalue, the modulus of the tensor: this is valued from 0° (no dip) to 90° (vertical). The relative values of "E"_{1}, "E"_{2}, and "E"_{3}are dictated by the nature of the sediment's fabric. If "E"_{1}= "E"_{2}= "E"_{3}, the fabric is said to be isotropic. If "E"_{1}= "E"_{2}> "E"_{3}the fabric is planar. If "E"_{1}> "E"_{2}> "E"_{3}the fabric is linear. See 'A Practical Guide to the Study of Glacial Sediments' by Benn & Evans, 2004 [*Benn, D., Evans, D., 2004. A Practical Guide to the study of Glacial Sediments. London: Arnold. pp 103-107*] .**Factor analysis**In

factor analysis , the eigenvectors of acovariance matrix orcorrelation matrix correspond to factors, and eigenvalues to the variance explained by these factors. Factor analysis is a statistical technique used in thesocial science s and inmarketing ,product management ,operations research , and other applied sciences that deal with large quantities of data. The objective is to explain most of the covariability among a number of observablerandom variable s in terms of a smaller number of unobservable latent variables called factors. The observable random variables are modeled aslinear combination s of the factors, plus unique variance terms. Eigenvalues are used in analysis used by Q-methodology software; factors with eigenvalues greater than 1.00 are considered significant, explaining an important amount of the variability in the data, while eigenvalues less than 1.00 are considered too weak, not explaining a significant portion of the data variability.**Vibration analysis**Eigenvalue problems occur naturally in the vibration analysis of mechanical structures with many

degrees of freedom . The eigenvalues are used to determine the natural frequencies of vibration, and the eigenvectors determine the shapes of these vibrational modes. The orthogonality properties of the eigenvectors allows decoupling of the differential equations so that the system can be represented as linear summation of the eigenvectors. The eigenvalue problem of complex structures is often solved usingfinite element analysis .**Eigenfaces**In

image processing , processed images offace s can be seen as vectors whose components are thebrightness es of eachpixel . [*Citation*] The dimension of this vector space is the number of pixels. The eigenvectors of the

last=Xirouhakis

first=A.

first2=G.

last2=Votsis

first3=A.

last3=Delopoulus

title=Estimation of 3D motion and structure of human faces

publisher=Online paper in PDF format, National Technical University of Athens

url=http://www.image.ece.ntua.gr/papers/43.pdf

year=2004covariance matrix associated to a large set of normalized pictures of faces are calledeigenface s; this is an example ofprincipal components analysis . They are very useful for expressing any face image as alinear combination of some of them. In the facial recognition branch ofbiometrics , eigenfaces provide a means of applyingdata compression to faces for identification purposes. Research related to eigen vision systems determining hand gestures has also been made. More on determining**sign language**letters using eigen systems can be found here: http://www.geigel.com/signlanguage/index.phpSimilar to this concept, eigenvoices concept is also developed which represents the general direction of variability in human

**pronunciation**s of a particular utterance, such as a word in a language. Based on a linear combination of such eigenvoices, a new voice pronunciation of the word can be constructed. These concepts have been found useful in automatic speech recognition systems, for speaker adaptation.**Tensor of inertia**In

mechanics , the eigenvectors of the inertia tensor define theprincipal axes of arigid body . Thetensor ofinertia is a key quantity required in order to determine the rotation of a rigid body around itscenter of mass .**Stress tensor**In

solid mechanics , thestress tensor is symmetric and so can be decomposed into adiagonal tensor with the eigenvalues on the diagonal and eigenvectors as a basis. Because it is diagonal, in this orientation, the stress tensor has no shear components; the components it does have are the principal components.**Eigenvalues of a graph**In

spectral graph theory , an eigenvalue of a graph is defined as an eigenvalue of the graph'sadjacency matrix "A", or (increasingly) of the graph's Laplacian matrix, which is either "T"−"A" or "I"−"T"^{ 1/2}"AT"^{ −1/2}, where "T" is a diagonal matrix holding the degree of each vertex, and in "T"^{ −1/2}, 0 is substituted for 0^{−1/2}. The "k"th principal eigenvector of a graph is defined as either the eigenvector corresponding to the "k"th largest eigenvalue of "A", or the eigenvector corresponding to the "k"th smallest eigenvalue of the Laplacian. The first principal eigenvector of the graph is also referred to merely as the principal eigenvector.The principal eigenvector is used to measure the centrality of its vertices. An example is

Google 'sPageRank algorithm. The principal eigenvector of a modifiedadjacency matrix of the World Wide Web graph gives the page ranks as its components. This vector corresponds to thestationary distribution of theMarkov chain represented by the row-normalized adjacency matrix; however, the adjacency matrix must first be modified to ensure a stationary distribution exists. The second principal eigenvector can be used to partition the graph into clusters, via spectral clustering. Other methods are also available for clustering.**See also***

Nonlinear eigenproblem

*Quadratic eigenvalue problem

*Eigenspectrum **Notes****References*** Citation

last=Korn

first=Granino A.

first2=Theresa M.

last2=Korn

title=Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review

publisher=1152 p., Dover Publications, 2 Revised edition

year=2000

isbn=0-486-41147-8.

* Citationlast = Lipschutz

first = Seymour

title = Schaum's outline of theory and problems of linear algebra

edition = 2nd

publisher = McGraw-Hill Companies

location = New York, NY

series = Schaum's outline series

year = 1991

isbn = 0-07-038007-4 .

* Citationlast = Friedberg

first = Stephen H.

first2 = Arnold J.

last2 = Insel

first3 = Lawrence E.

last3 = Spence

title = Linear algebra

edition = 2nd

publisher = Prentice Hall

location = Englewood Cliffs, NJ 07632

year = 1989

isbn = 0-13-537102-3 .

* Citationlast = Aldrich

first = John

title = Earliest Known Uses of Some of the Words of Mathematics

url = http://members.aol.com/jeff570/e.html

editor = Jeff Miller (Editor)

year = 2006

chapter = Eigenvalue, eigenfunction, eigenvector, and related terms

chapterurl = http://members.aol.com/jeff570/e.html

accessdate = 2006-08-22

* Citationlast=Strang

first=Gilbert

title=Introduction to linear algebra

publisher=Wellesley-Cambridge Press, Wellesley, MA

year=1993

isbn=0-961-40885-5.

* Citationlast=Strang

first=Gilbert

title=Linear algebra and its applications

publisher=Thomson, Brooks/Cole, Belmont, CA

year=2006

isbn=0-030-10567-6.

* Citationlast=Bowen

first=Ray M.

first2=Chao-Cheng

last2=Wang

title=Linear and multilinear algebra

publisher=Plenum Press, New York, NY

year=1980

isbn=0-306-37508-7.

* Citationlast = Cohen-Tannoudji

first = Claude

author-link = Claude Cohen-Tannoudji

title = Quantum mechanics

publisher = John Wiley & Sons

year = 1977

chapter = Chapter II. The mathematical tools of quantum mechanics

isbn = 0-471-16432-1 .

* Citationlast = Fraleigh

first = John B.

first2 = Raymond A.

last2 = Beauregard

title = Linear algebra

edition = 3rd

publisher = Addison-Wesley Publishing Company

year = 1995

isbn = 0-201-83999-7 (international edition) .

* Citationlast=Golub

first=Gene H.

first2=Charles F.

last2=van Loan

title=Matrix computations (3rd Edition)

publisher=Johns Hopkins University Press, Baltimore, MD

year=1996

isbn=978-0-8018-5414-9.

* Citationlast = Hawkins

first = T.

title = Cauchy and the spectral theory of matrices

journal = Historia Mathematica

volume = 2

pages = 1-29

date = 1975 .

* Citationlast=Horn

first=Roger A.

first2=Charles F.

last2=Johnson

title=Matrix analysis

publisher=Cambridge University Press

year=1985

isbn=0-521-30586-1 (hardback), ISBN 0-521-38632-2 (paperback).

* Citationlast=Kline

first=Morris

title=Mathematical thought from ancient to modern times

publisher=Oxford University Press

year=1972

isbn=0-195-01496-0.

* Citationlast=Meyer

first=Carl D.

title=Matrix analysis and applied linear algebra

publisher=Society for Industrial and Applied Mathematics (SIAM), Philadelphia

year=2000

isbn=978-0-89871-454-8.

* Citationlast=Brown

first=Maureen

title=Illuminating Patterns of Perception: An Overview of Q Methodology

date=October 2004

isbn=.

* Citationlast = Golub

first = Gene F.

first2 = Henk A.

last2 = van der Vorst

title = Eigenvalue computation in the 20th century

journal = Journal of Computational and Applied Mathematics

volume = 123

pages = 35-65

date = 2000 .

* Citationlast=Akivis

first=Max A.

coauthors=Vladislav V. Goldberg

title=Tensor calculus

series=Russian

publisher=Science Publishers, Moscow

year=1969.

* Citationlast=Gelfand

first=I. M.

title=Lecture notes in linear algebra

series=Russian

publisher=Science Publishers, Moscow

year=1971

isbn=.

* Citationlast=Alexandrov

first=Pavel S.

title=Lecture notes in analytical geometry

series=Russian

publisher=Science Publishers, Moscow

year=1968

isbn=.

* Citationlast=Carter

first=Tamara A.

first2=Richard A.

last2=Tapia

first3=Anne

last3=Papaconstantinou

title=Linear Algebra: An Introduction to Linear Algebra for Pre-Calculus Students

publisher=Rice University, Online Edition

url=http://ceee.rice.edu/Books/LA/index.html

accessdate=2008-02-19.

* Citationlast=Roman

first=Steven

title=Advanced linear algebra

edition=3rd

publisher=Springer Science + Business Media, LLC

place=New York, NY

year=2008

isbn=978-0-387-72828-5.

* Citationlast=Shilov

first=Georgi E.

title=Linear algebra

edition=translated and edited by Richard A. Silverman

publisher=Dover Publications

place=New York

year=1977

isbn=0-486-63518-X.

* Citationlast=Hefferon

first=Jim

title=Linear Algebra

publisher=Online book, St Michael's College, Colchester, Vermont, USA

url=http://joshua.smcvt.edu/linearalgebra/

year=2001

isbn=.

* Citationlast=Kuttler

first=Kenneth

title=An introduction to linear algebra

publisher=Online e-book in PDF format, Brigham Young University

url=http://www.math.byu.edu/~klkuttle/Linearalgebra.pdf

year=2007

isbn=.

* Citationlast=Demmel

first=James W.

title=Applied numerical linear algebra

publisher=SIAM

year=1997

isbn=0-89871-389-7.

* Citationlast=Beezer

first=Robert A.

title=A first course in linear algebra

url=http://linear.ups.edu/

publisher=Free online book under GNU licence, University of Puget Sound

year=2006

isbn=.

* Citationlast = Lancaster

first = P.

title = Matrix theory

series = Russian

publisher = Science Publishers

location = Moscow, Russia

year = 1973 .

* Citationlast = Halmos

first = Paul R.

author-link = Paul Halmos

title = Finite-dimensional vector spaces

edition = 8th

publisher = Springer-Verlag

location = New York, NY

year = 1987

isbn = 0387900934 .

* Pigolkina, T. S. and Shulman, V. S., "Eigenvalue" (in Russian), In:Vinogradov, I. M. (Ed.), "Mathematical Encyclopedia", Vol. 5, Soviet Encyclopedia, Moscow, 1977.

* Pigolkina, T. S. and Shulman, V. S., "Eigenvector" (in Russian), In:Vinogradov, I. M. (Ed.), "Mathematical Encyclopedia", Vol. 5, Soviet Encyclopedia, Moscow, 1977.

* Citationlast=Greub

first=Werner H.

title=Linear Algebra (4th Edition)

publisher=Springer-Verlag, New York, NY

year=1975

isbn=0-387-90110-8.

* Citationlast=Larson

first=Ron

first2=Bruce H.

last2=Edwards

title=Elementary linear algebra

edition=5th

publisher=Houghton Mifflin Company

year=2003

isbn=0-618-33567-6.

* Curtis, Charles W., "Linear Algebra: An Introductory Approach", 347 p., Springer; 4th ed. 1984. Corr. 7th printing edition (August 19, 1999), ISBN 0387909923.

* Citationlast=Shores

first=Thomas S.

title=Applied linear algebra and matrix analysis

publisher=Springer Science+Business Media, LLC

year=2007

isbn=0-387-33194-8.

* Citationlast=Sharipov

first=Ruslan A.

title=Course of Linear Algebra and Multidimensional Geometry: the textbook

publisher=Online e-book in various formats on arxiv.org, Bashkir State University, Ufa

url=http://www.geocities.com/r-sharipov

year=1996

isbn=5-7477-0099-5

id=arxiv|math|0405323v1.

* Citationlast=Gohberg

first=Israel

first2=Peter

last2=Lancaster

first3=Leiba

last3=Rodman

title=Indefinite linear algebra and applications

publisher=Birkhäuser Verlag

place=Basel-Boston-Berlin

year=2005

isbn=3-7643-7349-0.**External links*** [

*http://web.mit.edu/18.06/www/Demos/eigen-applet-all/eigen_sound_all.html Eigen Vector Examination (Demo) with Sound*]

* [*http://video.google.com/videoplay?docid=-8791056722738431468&hl=en MIT Video Lecture on Eigenvalues and Eigenvectors*] , from MIT OpenCourseWare

* [*http://www.caam.rice.edu/software/ARPACK/ ARPACK*] is a collection of FORTRAN subroutines for solving large scale (sparse) eigenproblems.

* [*http://www.math.uri.edu/~jbaglama/ IRBLEIGS*] , hasMATLAB code with similar capabilities to ARPACK. (See [*http://www.math.uri.edu/~jbaglama/papers/paper10.pdf this paper*] for a comparison between IRBLEIGS and ARPACK.)

* [*http://netlib.org/lapack/ LAPACK*] is a collection of FORTRAN subroutines for solving dense linear algebra problems

* [*http://www.alglib.net/eigen/ ALGLIB*] includes a partial port of the LAPACK to C++, C#, Delphi, etc.

** [

*http://mathworld.wolfram.com/Eigenvector.html MathWorld: Eigenvector*]

* [*http://www.arndt-bruenner.de/mathe/scripts/engl_eigenwert.htm Online calculator for Eigenvalues and Eigenvectors*]

* [*http://www.bluebit.gr/matrix-calculator/ Online Matrix Calculator*] Calculates eigenvalues, eigenvectors and other decompositions of matrices online

* [*http://www.vrand.com Vanderplaats Research and Development*] - Provides the [*http://www.vrand.com SMS*] eigenvalue solver for Structural Finite Element. The solver is in the [*http://www.vrand.com/Genesis.html "GENESIS"*] program as well as other commercial programs. SMS can be easily use with MSC.Nastran or NX/Nastran via DMAPs.

* [*http://www.physlink.com/education/AskExperts/ae520.cfm What are Eigen Values?*] from PhysLink.com's "Ask the Experts"

* [*http://www.cs.utk.edu/~dongarra/etemplates/index.html Templates for the Solution of Algebraic Eigenvalue Problems*] Edited by Zhaojun Bai, James Demmel, Jack Dongarra, Axel Ruhe, andHenk van der Vorst (a guide to the numerical solution of eigenvalue problems)

*Wikimedia Foundation.
2010.*