- Separated sets
In
topology and related branches ofmathematics , separated sets are pairs ofsubset s of a giventopological space that are related to each other in a certain way.The notion of when two sets are separated or not is important both to the notion ofconnected space s (and their connected components) as well as to theseparation axiom s for topological spaces.Separated sets should not be confused with
separated space s (defined below), which are somewhat related but different.Separable space s are again a completely different topological concept.Definitions
There are various ways in which two subsets of a topological space "X" can be considered to be separated.
*"A" and "B" are disjoint if their intersection is the
empty set . This property has nothing to do with topology as such, but only set theory; we include it here because it is the weakest in the sequence of different notions. For more on disjointness in general, see:disjoint sets .*"A" and "B" are separated in "X" if each is disjoint from the other's closure. The closures themselves do not have to be disjoint from each other; for example, the intervals [0,1) and (1,2] are separated in the
real line R, even though the point 1 belongs to both of their closures. More generally in anymetric space , twoopen balls "B""r"("x") = {"y":"d"(x,y)<"r"} and "B""s"("x") = {"y":"d"(x,y)<"s"} are separated whenever "d"("x","y") ≥ "r"+"s". Note that any two separated sets automatically must be disjoint.*"A" and "B" are separated by neighbourhoods if there are neighbourhoods "U" of "A" and "V" of "B" such that "U" and "V" are disjoint. (Sometimes you will see the requirement that "U" and "V" be "open" neighbourhoods, but this makes no difference in the end.) For the example of "A" = [0,1) and "B" = (1,2] , you could take "U" = (-1,1) and "V" = (1,3). Note that if any two sets are separated by neighbourhoods, then certainly they are separated. If "A" and "B" are open and disjoint, then they must be separated by neighbourhoods; just take "U" := "A" and "V" := "B". For this reason, separatedness is often used with closed sets (as in the
normal separation axiom ).*"A" and "B" are separated by closed neighbourhoods if there is a closed neighbourhood "U" of "A" and a closed neighbourhood "V" of "B" such that "U" and "V" are disjoint. Our examples, [0,1) and (1,2] , are "not" separated by closed neighbourhoods. You could make either "U" or "V" closed by including the point 1 in it, but you cannot make them both closed while keeping them disjoint. Note that if any two sets are separated by closed neighbourhoods, then certainly they are separated by neighbourhoods.
*"A" and "B" are separated by a function if there exists a
continuous function "f" from the space "X" to the real line R such that "f"("A") = {0} and "f"("B") = {1}. (Sometimes you will see theunit interval [0,1] used in place of R in this definition, but it makes no difference in the end.) In our example, [0,1) and (1,2] are not separated by a function, because there is no way to continuously define "f" at the point 1. Note that if any two sets are separated by a function, then they are also separated by closed neighbourhoods; the neighbourhoods can be given in terms of thepreimage of "f" as "U" := "f"-1 [-"e","e"] and "V" := "f"-1 [1-"e",1+"e"] , as long as "e" is a positive real number less than 1/2.*"A" and "B" are precisely separated by a function if there exists a continuous function "f" from "X" to R such that "f" -1(0) = "A" and "f" -1(1) = "B". (Again, you may also see the unit interval in place of R, and again it makes no difference.) Note that if any two sets are precisely separated by a function, then certainly they are separated by a function. Since {0} and {1} are closed in R, only closed sets are capable of being precisely separated by a function; but just because two sets are closed and separated by a function does not mean that they are automatically precisely separated by a function (even a different function).
Relation to separation axioms and separated spaces
The "separation axioms" are various conditions that are sometimes imposed upon topological spaces which can be described in terms of the various types of separated sets.As an example, we will define the T2 axiom, which is the condition imposed on separated spaces.Specifically, a topological space is "separated" if, given any two
distinct points "x" and "y", the singleton sets {"x"} and {"y"} are separated by neighbourhoods.Separated spaces are also called "Hausdorff spaces" or "T2 spaces".Further discussion of separated spaces may be found in the article
Hausdorff space .General discussion of the various separation axioms is in the articleSeparation axiom .Relation to connected spaces
Given a topological space "X", it is sometimes useful to consider whether it is possible for a subset "A" to be separated from its complement.This is certainly true if "A" is either the empty set or the entire space "X", but there may be other possibilities.A topological space "X" is "connected" if these are the only two possibilities.Conversely, if a nonempty subset "A" is separated from its own complement, and if the only
subset of "A" to share this property is the empty set, then "A" is an "open-connected component" of "X".(In the degenerate case where "X" is itself theempty set {}, authorities differ on whether {} is connected and whether {} is an open-connected component of itself.)For more on connected spaces, see
Connected space .Relation to topologically distinguishable points
Given a topological space "X", two points "x" and "y" are "topologically distinguishable" if there exists an
open set that one point belongs to but the other point does not.If "x" and "y" are topologically distinguishable, then thesingleton set s {"x"} and {"y"} must be disjoint.On the other hand, if the singletons {"x"} and {"y"} are separated, then the points "x" and "y" must be topologically distinguishable.Thus for singletons, topological distinguishability is a condition in between disjointness and separatedness.For more about topologically distinguishable points, see
Topological distinguishability .
Wikimedia Foundation. 2010.