The tectonic plates of the lithosphere on Earth
Earth cutaway from core to exosphere

The lithosphere (play /ˈlɪθəsfɪər/; Greek: λίθος [lithos] for "rocky" + σφαῖρα [sphaira] for "sphere") is the rigid[1] outermost shell of a rocky planet. On Earth, it comprises the crust and the portion of the upper mantle that behaves elastically on time scales of thousands of years or greater.


Earth's lithosphere

In the earth the lithosphere includes the crust and the uppermost mantle, which constitute the hard and rigid outer layer of the Earth. The lithosphere is underlain by the asthenosphere, the weaker, hotter, and deeper part of the upper mantle. The boundary between the lithosphere and the underlying asthenosphere is defined by a difference in response to stress: the lithosphere remains rigid for very long periods of geologic time in which it deforms elastically and through brittle failure, while the asthenosphere deforms viscously and accommodates strain through plastic deformation. The lithosphere is broken into tectonic plates. The uppermost part of the lithosphere that chemically reacts to the atmosphere, hydrosphere and biosphere through the soil forming process is called the pedosphere.

The concept of the lithosphere as Earth’s strong outer layer was developed by Joseph Barrell, who wrote a series of papers introducing the concept.[2][3][4] The concept was based on the presence of significant gravity anomalies over continental crust, from which he inferred that there must exist a strong upper layer (which he called the lithosphere) above a weaker layer which could flow (which he called the asthenosphere). These ideas were expanded by the Harvard geologist Reginald Aldworth Daly in 1940 with his seminal work, Strength and structure of the Earth[5] and have been broadly accepted by geologists and geophysicists. Although these ideas about lithosphere and asthenosphere were developed long before plate tectonic theory was articulated in the 1960s, the concepts that a strong lithosphere exists and that this rests on a weak asthenosphere are essential to that theory.

The lithosphere provides a conductive lid atop the convecting mantle; as such, it affects heat transport through the Earth.

There are two types of lithosphere:

  • Oceanic lithosphere, which is associated with Oceanic crust and exists in the ocean basins
  • Continental lithosphere, which is associated with Continental crust

The thickness of the lithosphere is considered to be the depth to the isotherm associated with the transition between brittle and viscous behavior.[6] The temperature at which olivine begins to deform viscously (~1000°C) is often used to set this isotherm because olivine is generally the weakest mineral in the upper mantle. Oceanic lithosphere is typically about 50–100 km thick (but beneath the mid-ocean ridges is no thicker than the crust), while continental lithosphere has a range in thickness from about 40 km to perhaps 200 km; the upper ~30 to ~50 km of typical continental lithosphere is crust. The mantle part of the lithosphere consists largely of peridotite. The crust is distinguished from the upper mantle by the change in chemical composition that takes place at the Moho discontinuity.

Oceanic lithosphere

Oceanic lithosphere consists mainly of mafic crust and ultramafic mantle (peridotite) and is denser than continental lithosphere, for which the mantle is associated with crust made of felsic rocks. Oceanic lithosphere thickens as it ages and moves away from the mid-ocean ridge. This thickening occurs by conductive cooling, which converts hot asthenosphere into lithospheric mantle, and causes the oceanic lithosphere to become increasingly thick and dense with age. The thickness of the mantle part of the oceanic lithosphere can be approximated as a thermal boundary layer that thickens as the square root of time.

 \, h \, \sim \, 2\, \sqrt{ \kappa t } \,

Here, h is the thickness of the oceanic mantle lithosphere, κ is the thermal diffusivity (approximately 10−6 m2/s), and t is time.

Oceanic lithosphere is less dense than asthenosphere for a few tens of millions of years, but after this becomes increasingly denser than asthenosphere. This is because the chemically-differentiated oceanic crust is lighter than asthenosphere, but due to thermal contraction, the mantle lithosphere is more dense than the asthenosphere. The gravitational instability of mature oceanic lithosphere has the effect that at subduction zones, oceanic lithosphere invariably sinks underneath the overriding lithosphere, which can be oceanic or continental. New oceanic lithosphere is constantly being produced at mid-ocean ridges and is recycled back to the mantle at subduction zones. As a result, oceanic lithosphere is much younger than continental lithosphere: the oldest oceanic lithosphere is about 170 million years old, while parts of the continental lithosphere are billions of years old. The oldest parts of continental lithosphere underlie cratons, and the mantle lithosphere there is thicker and less dense than typical; the relatively low density of such mantle "roots of cratons" helps to stabilize these regions.[7][8]

Subducted lithosphere

Geophysical studies in the early 21st Century posit that large pieces of the lithosphere have been subducted into the mantle as deep as 2900 km to near the core-mantle boundary,[9] while others "float" in the upper mantle,[10][11] while some stick down into the mantle as far as 400 km but remain "attached" to the continental plate above,[12] similar to the extent of the "tectosphere" proposed by Jordan in 1988.[13]

Mantle xenoliths

Geoscientists can directly study the nature of the subcontinental mantle by examining mantle xenoliths[14] brought up in kimberlite, lamproite, and other volcanic pipes. The histories of these xenoliths have been investigated by many methods, including analyses of abundances of isotopes of osmium and rhenium. Such studies have confirmed that mantle lithospheres below some cratons have persisted for periods in excess of 3 billion years, despite the mantle flow that accompanies plate tectonics.[15]



  1. ^ Skinner, B.J. & Porter, S.C.: Physical Geology, page 17, chapt. The Earth: Inside and Out, 1987, John Wiley & Sons, ISBN 0-471-05668-5
  2. ^ Barrell, J. 1914 The strength of the Earth's crust. Journal of Geology.22, 425-433.
  3. ^ Barrell, J. 1914 The strength of the Earth's crust. Journal of Geology 22, 441-468.
  4. ^ Barrell, J. 1914 The strength of the Earth's crust. Journal of Geology 22, 655-683.
  5. ^ Daly, R. 1940 Strength and structure of the Earth. New York: Prentice-Hall.
  6. ^ Parsons, B. and McKenzie, D. 1978. Mantle Convection and the thermal structure of the plates. Journal of Geophysical Research.
  7. ^ Jordan, T. H. 1978 Composition and development of the continental tectosphere. Nature 274, 544-548.
  8. ^ O’Reilly, Suzanne Y. et al. (2009) "Ultradeep continental roots and their oceanic remnants: A solution to the geochemical “mantle reservoir” problem?" LITHOS doi: 10.1016/j.lithos.2009.04.028
  9. ^ Burke, K. and Torsvik, T. H. (2004) "Derivation of Large Igneous Provinces of the past 200 million years from long-term heterogeneities in the deep mantle Earth and Planetary Science Letters 227: pp. 531-538
  10. ^ Replumaz, A. et al. (2004) "4-D evolution of SE Asia's mantle from geological reconstructions and seismic tomography" Earth and Planetary Science Letters 221: pp. 103-115, doi:10.1016/S0012-821X(04)00070-6
  11. ^ Li, Chang et al. (2008) "A new global model for P wave speed variations in Earth's mantle" Geochemistry Geophysics Geosystems 9(5): Q05018, doi: 10.1029/2007GC001806
  12. ^ O’Reilly, Suzanne Y. et al. (2009) "Ultradeep continental roots and their oceanic remnants: A solution to the geochemical “mantle reservoir” problem" Lithos doi:10.1016/j.lithos.2009.04.028
  13. ^ Jordan, T.H. (1988) "Structure and formation of the continental tectosphere" Journal of Petrology 29(Special Lithosphere Issue): pp. 11-38
  14. ^ Nixon, P.H. (1987) Mantle xenoliths : J. Wiley & Sons, 844 p. (ISBN 0-471-91209-3)
  15. ^ Carlson, R. W., Pearson, D. G., and James, D. E., 2004, Physical, chemical, and chronological characteristics of continental mantle. Reviews of Geophysics 43, 8755-1209/05/2004RG000156.


  • Stanley Chernicoff and Donna Whitney. Geology. An Introduction to Physical Geology, 4th ed., Pearson 1990

External links

See also

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • LITHOSPHÈRE — Dès la naissance de la géophysique et de la géodynamique, les continents furent considérés comme un ensemble de masses rigides, le sial (acronyme de si lice et al umine) flottant sur un manteau fluide, le sima (acronyme de si lice et ma gnésium) …   Encyclopédie Universelle

  • Lithosphere — Lithosphère La tectonique des plaques lithosphèriques sur la Terre. La lithosphère (littéralement, la « sphère de pierre ») est l enveloppe rigide terrestre la plus superficielle. Elle est divisée en un certain nombre de plaques… …   Wikipédia en Français

  • Lithosphere — Lith o*sphere, n. [Litho + sphere.] (Phys. Geog.) (a) The solid earth as distinguished from its fluid envelopes, the hydrosphere and atmosphere. (b) The outer part of the solid earth, the portion undergoing change through the gradual transfer of… …   The Collaborative International Dictionary of English

  • lithosphere — solid part of the earth s surface, 1881; see LITHO (Cf. litho ) stone + SPHERE (Cf. sphere) …   Etymology dictionary

  • lithosphere — [lith′əsfir΄] n. [ LITHO + SPHERE] the solid, rocky part of the earth; earth s crust …   English World dictionary

  • Lithosphère — La tectonique des plaques lithosphériques sur la Terre. La lithosphère constitue l es …   Wikipédia en Français

  • lithosphere — litosfera statusas T sritis fizika atitikmenys: angl. lithosphere vok. Lithosphäre, f rus. литосфера, f pranc. lithosphère, f …   Fizikos terminų žodynas

  • lithosphère — litosfera statusas T sritis fizika atitikmenys: angl. lithosphere vok. Lithosphäre, f rus. литосфера, f pranc. lithosphère, f …   Fizikos terminų žodynas

  • Lithosphere —    The upper layer of the Earth s crust where plate tectonics occurs. The Lithosphere goes to a depth of 50 to 100 kilometers (31 to 62 miles) …   The writer's dictionary of science fiction, fantasy, horror and mythology

  • lithosphere — litosfera statusas T sritis chemija apibrėžtis 50–200 km storio viršutinis kietasis Žemės apvalkalas. atitikmenys: angl. lithosphere rus. литосфера …   Chemijos terminų aiškinamasis žodynas

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”