# Bézout matrix

Bézout matrix

In mathematics, a Bézout matrix (or Bézoutian) is a special square matrix associated to two polynomials. Such matrices are sometimes used to test the stability of a given polynomial.

Definition

Let "f"("z") and "g"("z") be two complex polynomials of degree at most "n" with coefficients (note that any coefficient could be zero):

:$f\left(z\right)=sum_\left\{i=0\right\}^n u_i z^i,quadquad g\left(z\right)=sum_\left\{i=0\right\}^n v_i z^i.$

The Bézout matrix of order "n" associated to the polynomials "f" and "g" is

:$B_n\left(f,g\right)= \left[b\right] _\left\{ij\right\}$.

It is in $mathbb\left\{C\right\}^\left\{n imes n\right\}$ and the entries of that matrix are such that if we note for each "i","j"=1,...,n, $m_\left\{ij\right\}=min\left\{i,n+1-j\right\}$, then::$b_\left\{ij\right\}=sum_\left\{k=1\right\}^\left\{m_\left\{iju_\left\{j+k-1\right\}v_\left\{i-k\right\}-u_\left\{i-k\right\}v_\left\{j+k-1\right\}.$

To each Bézout matrix, one can associate the following bilinear form, called the Bézoutian::$mbox\left\{Bez\right\}:mathbb\left\{C\right\}^n imesmathbb\left\{C\right\}^n o mathbb\left\{C\right\}:\left(x,y\right)mapsto operatorname\left\{Bez\right\}\left(x,y\right)=x^*B_n\left(f,g\right)y.$

Examples

* For "n"=3, we have for any polynomials "f" and "g" of degree (at most) 3::

* Let $f\left(x\right)=3x^3-x$ and $g\left(x\right)=5x^2+1$ be two polynomials. Then::The last row and column are all zero as "f" and "g" have degree strictly less than "n" (equal 4). The other zero entries are due to the fact that for each "i"=0,...,n, either $u_i$ or $v_i$ is zero.

Properties

* $B_n\left(f,g\right)$ is symmetric (as a matrix);
* $B_n\left(f,g\right)=-B_n\left(g,f\right)$;
* $B_n\left(f,f\right)=0$;
* $B_n\left(f,g\right)$ is bilinear in ("f","g");
* $B_n\left(f,g\right)$ is in $mathbb\left\{R\right\}^\left\{n imes n\right\}$ if "f" and "g" have real coefficients;
* $B_n\left(f,g\right)$ is nonsingular with $n=max\left(deg\left(f\right),deg\left(g\right)\right)$ if and only if "f" and "g" have no common roots.
* $B_n\left(f,g\right)$ with $n=max\left(deg\left(f\right),deg\left(g\right)\right)$ has determinant which is the resultant of "f" and "g".

Applications

An important application of Bézout matrices can be found in control theory. To see this, let "f"("z") be a complex polynomial of degree "n" and denote by "q" and "p" the real polynomials such that "f"(i"y")="q"("y")+i"p"("y") (where "y" is real). We also note "r" for the rank and "&sigma;" for the signature of $B_n\left(p,q\right)$. Then, we have the following statements:
* "f"("z") has "n"-"r" roots in common with its conjugate;
* the left "r" roots of "f"("z") are located in such a way that:
** ("r"+"&sigma;")/2 of them lie in the open left half-plane, and
** ("r"-"&sigma;")/2 lie in the open right half-plane;
* "f" is Hurwitz stable iff $B_n\left(p,q\right)$ is positive definite.

The third statement gives a necessary and sufficient condition concerning stability. Besides, the first statement exhibits some similarities with a result concerning Sylvester matrices while the second one can be related to Routh-Hurwitz theorem.

References

* D. Hinrichsen and A.J. Pritchard, "Mathematical Systems Theory I: Modelling, State Space Analysis, Stability and Robustness", Springer-Verlag, Berlin-Heidelberg, 2005

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• Matrix - получить на Академике действующий промокод Pharmacosmetica или выгодно matrix купить со скидкой на распродаже в Pharmacosmetica

• Étienne Bézout — (March 31, 1730 September 27, 1783) was a French mathematician who was born in Nemours, Seine et Marne, France, and died in Basses Loges (near Fontainebleau), France.WorkIn 1758 Bézout was elected an adjoint in mechanics of the French Academy of… …   Wikipedia

• Methode de Bezout — Méthode de Bézout La méthode de Bézout, imaginée et mise au point par Étienne Bézout en 1762, est une méthode générale de résolution des équations algébriques. Cette méthode tente de ramener l équation que l on veut résoudre à d autres équations… …   Wikipédia en Français

• Méthode De Bézout — La méthode de Bézout, imaginée et mise au point par Étienne Bézout en 1762, est une méthode générale de résolution des équations algébriques. Cette méthode tente de ramener l équation que l on veut résoudre à d autres équations de degré moins… …   Wikipédia en Français

• Méthode de Bezout — Méthode de Bézout La méthode de Bézout, imaginée et mise au point par Étienne Bézout en 1762, est une méthode générale de résolution des équations algébriques. Cette méthode tente de ramener l équation que l on veut résoudre à d autres équations… …   Wikipédia en Français

• Méthode de bézout — La méthode de Bézout, imaginée et mise au point par Étienne Bézout en 1762, est une méthode générale de résolution des équations algébriques. Cette méthode tente de ramener l équation que l on veut résoudre à d autres équations de degré moins… …   Wikipédia en Français

• Méthode de Bézout — La méthode de Bézout, imaginée et mise au point par Étienne Bézout en 1762, est une méthode générale de résolution des équations algébriques. Cette méthode tente de ramener l équation que l on veut résoudre à d autres équations de degré moins… …   Wikipédia en Français

• Sylvester matrix — In mathematics, a Sylvester matrix is a matrix associated to two polynomials that gives us some information about those polynomials. It is named for James Joseph Sylvester.DefinitionFormally, let p and q be two polynomials, respectively of degree …   Wikipedia

• List of mathematics articles (B) — NOTOC B B spline B* algebra B* search algorithm B,C,K,W system BA model Ba space Babuška Lax Milgram theorem Baby Monster group Baby step giant step Babylonian mathematics Babylonian numerals Bach tensor Bach s algorithm Bachmann–Howard ordinal… …   Wikipedia

• List of matrices — This page lists some important classes of matrices used in mathematics, science and engineering: Matrices in mathematics*(0,1) matrix a matrix with all elements either 0 or 1. Also called a binary matrix . *Adjugate matrix * Alternant matrix a… …   Wikipedia

• Resultant — In mathematics, the resultant of two monic polynomials P and Q over a field k is defined as the product:mathrm{res}(P,Q) = prod {(x,y):,P(x)=0,, Q(y)=0} (x y),,of the differences of their roots, where x and y take on values in the algebraic… …   Wikipedia

### Share the article and excerpts

##### Direct link
Do a right-click on the link above
and select “Copy Link”