Lamé function

Lamé function

In mathematics, a Lamé function (or ellipsoidal harmonic function) is a solution of Lamé's equation, a second order ordinary differential equation. It was introduced in the paper harvs|first=Gabriel|last= Lamé|authorlink= Gabriel Lamé|year=1837. Lamé's equation appears in the method of separation of variables applied to the Laplace equation in elliptic coordinates.

Lamé functions are discussed in detail in harvs|loc=Chapter XV | last1=Erdélyi | first1=Arthur | last2=Magnus | first2=Wilhelm | author2-link=Wilhelm Magnus | last3=Oberhettinger | first3=Fritz | last4=Tricomi | first4=Francesco G. | title=Higher transcendental functions. Vol. III | publisher=McGraw-Hill Book Company, Inc., New York-Toronto-London | id=MathSciNet | id = 0066496 | year=1955

Lamé's equation is :frac{d^2y}{dx^2} = (A+Bweierp(x))ywhere "A" and "B" are constants, and wp is the Weierstrass elliptic function. The most important case is when "B" of the form "n"("n" + 1) for an integer "n", in which case the solutions extend to meromorphic functions defined in the whole complex plane. For other values of "B" the solutions have branch points.

By changing the independent variable, Lamé's equation can also be rewritten in algebraic form as:frac{d^2y}{dt^2} +frac{1}{2}left(frac{1}{t-e_1}+frac{1}{t-e_2}+frac{1}{t-e_3} ight)frac{dy}{dt} = frac{A+Bt}{4(t-e_1)(t-e_2)(t-e_3)}y

Lamé functions have important applications in many scientific areas, including geophysics and neuroimaging. Ellipsoidal harmonics have significant advantages over spherical harmonics for forward/inverse modeling in magnetoencephalography and electroencephalography due to superior cortical localization accuracy [ A. Irimia (2005) Electric field and potential calculation for a bioelectric current dipole in an ellipsoid. Journal of Physics A: Mathematical and General vol. 38 pp. 8123-8138 ]

References

*Citation | last1=Erdélyi | first1=Arthur | last2=Magnus | first2=Wilhelm | author2-link=Wilhelm Magnus | last3=Oberhettinger | first3=Fritz | last4=Tricomi | first4=Francesco G. | title=Higher transcendental functions. Vol. III | publisher=McGraw-Hill Book Company, Inc., New York-Toronto-London | id=MathSciNet | id = 0066496 | year=1955
*citation|first=G.|last= Lamé|author-link=Gabriel Lamé|title=Sur les surfaces isothermes dans les corps homogènes en équilibre de température|journal= J. Math. Pures Appl. |volume= 2 |year=1837|pages= 147–188
*springer|id=L/l057400|first=N.Kh.|last= Rozov|title=Lamé equation
*springer|id=L/l057410|first=N.Kh.|last= Rozov
*citation|first1=A.|last1= Irimia|first2=L.A.|last2=Bradshaw|title=Ellipsoidal electrogastrographic forward modelling|journal= Physics in Medicine and Biology |volume= 50|year=2005|pages= 4429-4444


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Lame — (l[=a]m), a. [Compar. {Lamer} (l[=a]m [ e]r); superl. {Lamest}.] [OE. lame, AS. lama; akin to D. lam, G. lahm, OHG., Dan., & Sw. lam, Icel. lami, Russ. lomate to break, lomota rheumatism.] 1. (a) Moving with pain or difficulty on account of… …   The Collaborative International Dictionary of English

  • Lame duck — Lame Lame (l[=a]m), a. [Compar. {Lamer} (l[=a]m [ e]r); superl. {Lamest}.] [OE. lame, AS. lama; akin to D. lam, G. lahm, OHG., Dan., & Sw. lam, Icel. lami, Russ. lomate to break, lomota rheumatism.] 1. (a) Moving with pain or difficulty on… …   The Collaborative International Dictionary of English

  • Lamé parameters — In linear elasticity, the Lamé parameters are the two parameters * λ, also called Lamé s first parameter . * μ, the shear modulus or Lamé s second parameter .which in homogenous, isotropic materials satisfy Hooke s law in 3D,:sigma=2mu varepsilon …   Wikipedia

  • lame — 1. adjective /leɪm/ a) unable to walk properly because of a problem with ones feet or legs a lame leg, arm or muscle b) moving with pain or difficulty on account of injury, defect or temporary obstruction of a function He had a really lame excuse …   Wiktionary

  • Gabriel Lamé — (July 22, 1795 May 1, 1870) was a French mathematician. BiographyLamé was born in Tours, in today s département of Indre et Loire.He became well known for his general theory of curvilinear coordinates and his notation and study of classes of… …   Wikipedia

  • Mathieu function — In mathematics, the Mathieu functions are certain special functions useful for treating a variety of problems in applied mathematics, including vibrating elliptical drumheads, quadrupoles mass filters and quadrupole ion traps for mass… …   Wikipedia

  • List of mathematics articles (L) — NOTOC L L (complexity) L BFGS L² cohomology L function L game L notation L system L theory L Analyse des Infiniment Petits pour l Intelligence des Lignes Courbes L Hôpital s rule L(R) La Géométrie Labeled graph Labelled enumeration theorem Lack… …   Wikipedia

  • List of mathematical functions — In mathematics, several functions or groups of functions are important enough to deserve their own names. This is a listing of pointers to those articles which explain these functions in more detail. There is a large theory of special functions… …   Wikipedia

  • Friedrich Heinrich Albert Wangerin — Infobox Scientist box width = 300px name = Friedrich Heinrich Albert Wangerin image size = caption = birth date = November 18, 1844 birth place = Greifenberg, Germany death date = death date and age |1933|10|25|1844|11|18 death place = Halle,… …   Wikipedia

  • Эрдейи, Артур — Артур Эрдейи Arthur Erdélyi Дата рождения: 2 октября 1908(1908 10 02) Место рождения: Будапешт, Австро Венгрия (ныне Венгрия) Дата смерти …   Википедия

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”