- Lamé function
In mathematics, a Lamé function (or ellipsoidal harmonic function) is a solution of Lamé's equation, a second order ordinary differential equation. It was introduced in the paper harvs|first=Gabriel|last= Lamé|authorlink= Gabriel Lamé|year=1837. Lamé's equation appears in the method of
separation of variables applied to theLaplace equation inelliptic coordinates .Lamé functions are discussed in detail in harvs|loc=Chapter XV | last1=Erdélyi | first1=Arthur | last2=Magnus | first2=Wilhelm | author2-link=Wilhelm Magnus | last3=Oberhettinger | first3=Fritz | last4=Tricomi | first4=Francesco G. | title=Higher transcendental functions. Vol. III | publisher=McGraw-Hill Book Company, Inc., New York-Toronto-London | id=MathSciNet | id = 0066496 | year=1955
Lamé's equation is :where "A" and "B" are constants, and is the
Weierstrass elliptic function . The most important case is when "B" of the form "n"("n" + 1) for an integer "n", in which case the solutions extend to meromorphic functions defined in the whole complex plane. For other values of "B" the solutions havebranch point s.By changing the independent variable, Lamé's equation can also be rewritten in algebraic form as:
Lamé functions have important applications in many scientific areas, including geophysics and neuroimaging. Ellipsoidal harmonics have significant advantages over
spherical harmonics for forward/inverse modeling inmagnetoencephalography andelectroencephalography due to superior cortical localization accuracy [ A. Irimia (2005) Electric field and potential calculation for a bioelectric current dipole in an ellipsoid. Journal of Physics A: Mathematical and General vol. 38 pp. 8123-8138 ]References
*Citation | last1=Erdélyi | first1=Arthur | last2=Magnus | first2=Wilhelm | author2-link=Wilhelm Magnus | last3=Oberhettinger | first3=Fritz | last4=Tricomi | first4=Francesco G. | title=Higher transcendental functions. Vol. III | publisher=McGraw-Hill Book Company, Inc., New York-Toronto-London | id=MathSciNet | id = 0066496 | year=1955
*citation|first=G.|last= Lamé|author-link=Gabriel Lamé|title=Sur les surfaces isothermes dans les corps homogènes en équilibre de température|journal= J. Math. Pures Appl. |volume= 2 |year=1837|pages= 147–188
*springer|id=L/l057400|first=N.Kh.|last= Rozov|title=Lamé equation
*springer|id=L/l057410|first=N.Kh.|last= Rozov
*citation|first1=A.|last1= Irimia|first2=L.A.|last2=Bradshaw|title=Ellipsoidal electrogastrographic forward modelling|journal= Physics in Medicine and Biology |volume= 50|year=2005|pages= 4429-4444
Wikimedia Foundation. 2010.