- Painlevé transcendents
In mathematics, Painlevé transcendents are solutions to certain
nonlinear second-order ordinary differential equations in the complex plane with the Painlevé property (the only movable singularities are poles), but which are not generally solvable in terms ofelementary functions . They are named for the French mathematican (and prime minister)Paul Painlevé who found them around 1900.History
Painlevé transcendents have their origin in the study of
special functions , which often arise as solutions of differential equations, as well as in the study ofisomonodromic deformation s of linear differential equations. One of the most useful classes of special functions are theelliptic functions . They are defined by second order ordinary differential equations whose singularities have the Painlevé property: the only movable singularities are poles. This property is shared by all linear ordinary differential equations but is rare in nonlinear equations. Poincare and L. Fuchs showed that any first order equation with the Painlevé property can be transformed into the Weierstrass equation or theRiccati equation , which can all be solved explicitly in terms of integration and previously known special functions. Émile Picard pointed out that for orders greater than 1, movable essential singularities can occur, and tried and failed to find new examples with the Painleve property. (For orders greater than 2 the solutions can have moving natural boundaries.) Around 1900,Paul Painlevé studied second order differential equations with no movable singularities. He found that up to certain transformations, every such equation of the form:
(with "R" a rational function) can be put into one of fifty "canonical forms" (listed in | year=1991 | volume=149.
The Painlevé equations are all reductions of the self dual Yang-Mills equations.
References
*springer|id=p/p110040|title=Painlevé-type equations|first=M. |last=Ablowitz
*Citation | last1=Ablowitz | first1=M. J. | last2=Clarkson | first2=P. A. | title=Solitons, nonlinear evolution equations and inverse scattering | publisher=Cambridge University Press | series=London Mathematical Society Lecture Note Series | isbn=978-0-521-38730-9 | id=MathSciNet | id = 1149378 | year=1991 | volume=149
*citation|first=J.|last= Chazy |title=Sur les équations différentielles dont l'intégrale générale possede un coupure essentielle mobile|journal= C.R. Acad. Sci. |place=Paris|volume= 150 |year=1910|pages= 456-458
*citation|first=J.|last= Chazy |title=Sur les équations différentielles de troisième ordre et d'ordre supérieur dont l'intégrale générale a ses points critiques fixés|journal= Acta Math.|volume= 33 |year=1911|pages= 317-385
*Citation | editor1-last=Conte | editor1-first=Robert | title=The Painlevé property | publisher=Springer-Verlag | location=Berlin, New York | series=CRM Series in Mathematical Physics | isbn=978-0-387-98888-7 | id=MathSciNet | id = 1713574 | year=1999
* "See sections 7.3, chapter 8, and the Appendices"
*Citation | author1-link=Athanassios S. Fokas | last1=Fokas | first1=Athanassios S. | last2=Its | first2=Alexander R. | last3=Kapaev | first3=Andrei A. | last4=Novokshenov | first4=Victor Yu. | title=Painlevé transcendents | publisher=American Mathematical Society | location=Providence, R.I. | series=Mathematical Surveys and Monographs | isbn=978-0-8218-3651-4 | id=MathSciNet | id = 2264522 | year=2006 | volume=128
*citation|first=B. |last=Gambier |title=Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est à points critique fixés|journal= Acta. Math.|volume= 33 |year=1910|pages= 1-55|doi=10.1007/BF02393211.
*Citation | last1=Gromak | first1=Valerii I. | last2=Laine | first2=Ilpo | last3=Shimomura | first3=Shun | title=Painlevé differential equations in the complex plane | publisher=Walter de Gruyter & Co. | location=Berlin | series=de Gruyter Studies in Mathematics | isbn=978-3-11-017379-6 | id=MathSciNet | id = 1960811 | year=2002 | volume=28
*
*Citation | last1=Iwasaki | first1=Katsunori | last2=Kimura | first2=Hironobu | last3=Shimomura | first3=Shun | last4=Yoshida | first4=Masaaki | title=From Gauss to Painlevé | publisher=Friedr. Vieweg & Sohn | location=Braunschweig | series=Aspects of Mathematics, E16 | isbn=978-3-528-06355-9 | id=MathSciNet | id = 1118604 | year=1991
*Citation | last1=Nishioka | first1=Keiji | title=A note on the transcendency of Painlevé's first transcendent | id=MathSciNet | id = 931951 | year=1988 | journal=Nagoya Mathematical Journal | issn=0027-7630 | volume=109 | pages=63–67
*Citation | last1=Noumi | first1=Masatoshi | title=Painlevé equations through symmetry | publisher=American Mathematical Society | location=Providence, R.I. | series=Translations of Mathematical Monographs | isbn=978-0-8218-3221-9 | id=MathSciNet | id = 2044201 | year=2004 | volume=223
*Citation | last1=Noumi | first1=Masatoshi | last2=Yamada | first2=Yasuhiko | title=Symmetries in Painlevé equations | id=MathSciNet | id = 1816984 | year=2004 | journal=Sugaku Expositions | issn=0898-9583 | volume=17 | issue=2 | pages=203–218
*citation|first=P.|last= Painlevé |title=Memoire sur les équations différentielles dont l'intégrale générale est uniforme|journal= Bull. Soc. Math. Phys. France |volume=28 |year=1900|pages= 201-261
*citation|first=P.|last= Painlevé |title= Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme|journal= Acta Math. |volume=25 |year=1902|pages= 1-85|doi= 10.1007/BF02419020
*springer|id=P/p071080|first=N.Kh.|last= Rozov|title=Painlevé equation
*Citation | last1=Umemura | first1=Hiroshi | title=On the irreducibility of Painlevé differential equations | id=MathSciNet | id = 944888 | year=1989 | journal=Sugaku Expositions | volume=2 | issue=2 | pages=231–252
*Citation | last1=Umemura | first1=Hiroshi | title=Painlevé equations and classical functions | id=MathSciNet | id = 1365704 | year=1998 | journal=Sugaku Expositions | issn=0898-9583 | volume=11 | issue=1 | pages=77–100External links
*dlmf|id=32
*Kanehisa Takasaki [http://www.math.h.kyoto-u.ac.jp/~takasaki/soliton-lab/chron/painleve.html Painlevé Equations]
*
*
Wikimedia Foundation. 2010.