Zernike polynomials

Zernike polynomials


200px|thumb">
Plots of the values in the unit disk.

In mathematics, the Zernike polynomials are a sequence of polynomials that are orthogonal on the unit disk. Named after Frits Zernike, they play an important role in geometrical optics.

Definitions

There are even and odd Zernike polynomials. The even ones are defined as

:Z^{m}_n( ho,varphi) = R^m_n( ho),cos(m,varphi) !

and the odd ones as

:Z^{-m}_n( ho,varphi) = R^m_n( ho),sin(m,varphi), !

where "m" and "n" are nonnegative integers with "n"≥"m", "φ" is the azimuthal angle in radians, and "ρ" is the normalized radial distance. The radial polynomials "R"mn are defined as

:R^m_n( ho) = ! sum_{k=0}^{(n-m)/2} !!! frac{(-1)^k,(n-k)!}{k!,((n+m)/2-k)!,((n-m)/2-k)!} ; ho^{n-2,k}

or

:R^m_n( ho) = frac{Gamma(n+1){}_2F_{1}(-frac{1}{2}(|m|+n),frac{1}{2}(|m|-n);-n; ho^{-2})}{Gamma(frac{1}{2}(2+n+m))Gamma(frac{1}{2}(2+n-m))} ho^n

for "n" − "m" even, and are identically 0 for "n" − "m" odd.

For "m" = 0, the even definition is used which reduces to "R"n0("ρ").

Applications

In precision optical manufacturing, Zernike polynomials are used to characterize higher-order errors observed in interferometric analyses, in order to achieve desired system performance.

In optometry and ophthalmology the Zernike polynomials are used to describe aberrations of the cornea or lens from an ideal spherical shape, which result in refraction errors.

They are commonly used in adaptive optics where they can be used to effectively cancel out atmospheric distortion. Obvious applications for this are IR or visual astronomy, and spy satellites. For example, one of the zernike terms (for "m" = 0, "n" = 2) is called 'de-focus'. [ [http://mathworld.wolfram.com/ZernikePolynomial.html "Zernike Polynomial"] ] By coupling the output from this term to a control system, an automatic focus can be implemented.

Another application of the Zernike polynomials is found in the Extended Nijboer-Zernike (ENZ) theory of diffraction and aberrations.

Zernike polynomials are widely used as basis functions of image moments.

References

* Born and Wolf, "Principles of Optics", Oxford: Pergamon, 1970
* Eric W. Weisstein et al., [http://mathworld.wolfram.com/ZernikePolynomial.html "Zernike Polynomial"] , at MathWorld.
* C. E. Campbell, [http://www.opticsinfobase.org/abstract.cfm?URI=josaa-20-2-209 "Matrix method to find a new set of Zernike coefficients form an original set when the aperture radius is changed"] , J. Opt. Soc. Am. A 20 (2003) 209.
* C. Cerjan, [http://www.opticsinfobase.org/abstract.cfm?URI=josaa-24-6-1609 "The Zernike-Bessel representation and its application to Hankel transforms"] , J. Opt. Soc. Am. A 24 (2007) 1609.
* S. A. Comastri, L. I. Perez, G. D. Perez, G. Martin and K. Bastida Cerjan, Zernike expansion coefficients: rescaling and decentering for different pupils and evaluation of corneal aberrations, J. Opt. A: Pure Appl. Opt. 9 (2007) 209.
* G. Conforti, [http://www.opticsinfobase.org/abstract.cfm?URI=ol-8-7-407 "Zernike aberration coefficients from Seidel and higher-order power-series coefficients"] , Opt. Lett. 8 (1983) 407.
* G-m. Dai and V. N. Mahajan, [http://www.opticsinfobase.org/abstract.cfm?URI=josaa-24-1-139 "Zernike annular polynomials and atmospheric turbulence"] , J. Opt. Soc. Am. A 24 (2007) 139.
* G-m. Dai, [http://www.opticsinfobase.org/abstract.cfm?URI=josaa-23-3-539 "Scaling Zernike expansion coefficients to smaller pupil sizes: a simpler formula"] , J. Opt. Soc. Am. A 23 (2006) 539.
* J. Herrmann, [http://www.opticsinfobase.org/abstract.cfm?URI=josa-71-8-989 "Cross coupling and aliasing in modal wave-front estimation"] , J. Opt. Soc. Am. 71 (1981) 989.
* P. H. Hu, J. Stone and T. Stanley, [http://www.opticsinfobase.org/abstract.cfm?URI=josaa-6-10-1595 "Application of Zernike polynomials to atmospheric propagation problems"] , J. Opt. Soc. Am. A 6 (1989) 1595.
* E. C. Kintner, On the mathematical properties of the Zernike Polynomials, Opt. Acta 23 (1976) 679.
* G. N. Lawrence and W. W. Chow, [http://www.opticsinfobase.org/abstract.cfm?URI=ol-9-7-267 "Wave-front tomography by Zernike Polynomial decomposition"] , Opt. Lett. 9 (1984) 287.
* L. Lundstrom and P. Unsbo, [http://www.opticsinfobase.org/abstract.cfm?URI=josaa-6-10-1595 "Transformation of Zernike coefficients: scaled, translated and rotate wavefronts with circular and elliptical pupils"] , J. Opt. Soc. Am. A 24 (2007) 569.
* V. N. Mahajan, [http://www.opticsinfobase.org/abstract.cfm?URI=josa-71-1-75 "Zernike annular polynomials for imaging systems with annular pupils"] , J. Opt. Soc. Am. 71 (1981) 75.
* R. J. Mathar, [http://arxiv.org/abs/0705.1329 "Third Order Newton's Method for Zernike Polynomial Zeros"] , arXiv:math.NA/0705.1329.
* R. J. Noll, [http://www.opticsinfobase.org/abstract.cfm?URI=josa-66-3-207 "Zernike polynomials and atmospheric turbulence"] , J. Opt. Soc. Am. 66 (1976) 207.
* A. Prata Jr and W. V. T. Rusch, [http://www.opticsinfobase.org/abstract.cfm?URI=ao-28-4-749 "Algorithm for computation of Zernike polynomials expansion coefficients"] , Appl. Opt. 28 (1989) 749.
* J. Schwiegerling, [http://www.opticsinfobase.org/abstract.cfm?URI=josaa-19-10-1937 "Scaling Zernike expansion coefficients to different pupil sizes"] , J. Opt. Soc. Am. A 19 (2002) 1937.
* C. J. R. Sheppard, S. Campbell and M. D. Hirschhorn, [http://www.opticsinfobase.org/abstract.cfm?URI=ao-43-20-3963 "Zernike expansion of separable functions in Cartesian coordinates"] , Appl. Opt. 43 (2004) 3963.
* H. Shu, L. Luo, G. Han and J.-L. Coatrieux, [http://www.opticsinfobase.org/abstract.cfm?URI=josaa-23-8-1960 "General method to derive the relationship between two sets of Zernike coefficients corresponding to different aperture sizes "] , J. Opt. Soc. Am. A 23 (2006) 1960.
* W. Swantner and W. W. Chow, [http://www.opticsinfobase.org/abstract.cfm?URI=ao-33-10-1832 "Gram-Schmidt orthogonalization of Zernike polynomials for general aperture shapes"] , Appl. Opt. 33 (1994) 1832.
* W. J. Tango, The circle polynomials of Zernike and their application in optics, Appl. Phys. A 13 (1977) 327.
* R. K. Tyson, [http://www.opticsinfobase.org/abstract.cfm?URI=ol-7-6-262 "Conversion of Zernike aberration coefficients to Seidel and higher-order power series aberration coefficiets"] , Opt. Lett. 7 (1982) 262.
* J. Y. Wang and D. E. Silva, [http://www.opticsinfobase.org/abstract.cfm?URI=ao-19-9-1510 "Wave-front interpretation with Zernike Polynomials"] , Appl. Opt. 19 (1980) 1510.
* R. Barakat, [http://www.opticsinfobase.org/abstract.cfm?URI=josa-70-6-739 "Optimum balanced wave-front aberrations for radially symmetric amplitude distributions: Generalizations of Zernike polynomials"] , J. Opt. Soc. Am. 70 (1980) 739.
* A. B. Bathia and E. Wolf, The Zernike circle polynomials occurring in diffraction theory, Proc. Phys. Soc. B 65 (1952) 909.
* T. A. ten Brummelaar, Modeling atmospheric wave aberrations and astronomical instrumentation using the polynomials of Zernike, Opt. Commun. 132 (1996) 329.
* M. Novotni, R. Klein, [http://www.cg.cs.uni-bonn.de/docs/publications/2003/novotni-2003-3d.pdf "3D Zernike Descriptors for Content Based Shape Retrieval"] , in proceedings of The 8th ACM Symposium on Solid Modeling and Applications June 2003.
* M. Novotni, R. Klein, [http://www.cg.cs.uni-bonn.de/docs/publications/2004/novotni-2004-shape.pdf "Shape retrieval using 3D Zernike descriptors"] , in Computer Aided Design, Vol. 36, No. 11, pages 1047-1062, 2004.

ee also

* Pseudo-Zernike polynomials
* Jacobi polynomials

External links

* [http://www.nijboerzernike.nl The Extended Nijboer-Zernike website.]

* [http://www.strw.leidenuniv.nl/~mathar/progs/Zernike.txt Cross-expansions in terms of powers and Jacobi Polynomials.]


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Pseudo-Zernike polynomials — In mathematics, Pseudo Zernike polynomials are well known and widely used in the analysis of optical systems. They are also widely used in image analysis as region descriptors. Definition They are an orthogonal set of complex valued… …   Wikipedia

  • Polynômes de Zernike — Tracés des polynômes de Zernike sur le disque unité. Les polynômes de Zernike sont une série de polynômes qui sont orthogonaux sur le disque unité. Ils portent le nom de Frits Zernike ; ils jouent un rôle important en optique géométrique.… …   Wikipédia en Français

  • Frits Zernike — Infobox Scientist name = Frits Zernike caption = Frits Zernike (1888 1966) birth date = July 16, 1888 birth place = Amsterdam, Netherlands death date = Death date and age|1966|03|10|1888|07|16|df=no death place = Amersfoort, Netherlands… …   Wikipedia

  • Orthogonal polynomials — In mathematics, an orthogonal polynomial sequence is a family of polynomials such that any two different polynomials in the sequence are orthogonal to each other under some inner product. The most widely used orthogonal polynomials are the… …   Wikipedia

  • Optical aberration — v · d · e Optical aberration …   Wikipedia

  • List of special functions and eponyms — This is a list of special function eponyms in mathematics, to cover the theory of special functions, the differential equations they satisfy, named differential operators of the theory (but not intended to include every mathematical eponym).… …   Wikipedia

  • Fourier optics — is the study of classical optics using techniques involving Fourier transforms and can be seen as an extension of the Huygens Fresnel principle. The underlying theorem that light waves can be described as made up of sinusoidal waves, in a manner… …   Wikipedia

  • Antoniadi-Skala — Schema zur Entstehung optischer Turbulenz (Seeing) in der Erdatmosphäre. Das Seeing oder auch astronomische Seeing ist ein Begriff aus der Astronomie, der die Bildunschärfe durch atmosphärische Störungen (Luftunruhe) bei der Beobachtung des… …   Deutsch Wikipedia

  • Pickering-Skala — Schema zur Entstehung optischer Turbulenz (Seeing) in der Erdatmosphäre. Das Seeing oder auch astronomische Seeing ist ein Begriff aus der Astronomie, der die Bildunschärfe durch atmosphärische Störungen (Luftunruhe) bei der Beobachtung des… …   Deutsch Wikipedia

  • Seeing — Schema zur Entstehung optischer Turbulenz (Seeing) in der Erdatmosphäre. Das Seeing oder auch Astronomisches Seeing ist ein Begriff aus der Astronomie, der die Bildunschärfe durch atmosphärische Störungen (Luftunruhe) bei der Beobachtung des… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”