Vlasov equation

Vlasov equation

Vlasov equation is a system of non-linear integro-differential equations describing dynamics of plasma consisting of charged particles with long-range (for example, Coulomb) interaction. The equations were first suggested for description of plasma by Anatoly Vlasov in 1938 [cite journal|author=A. A. Vlasov|title=On Vibration Properties of Electron Gas|journal=J. Exp. Theor. Phys.|volume=8 (3)|pages=291|year=1938|url= http://ufn.ru/ru/articles/1967/11/f/] (see also [cite journal|author=A. A. Vlasov|title=The Vibrational Properties of an Electron Gas|journal=Sov. Phys. Usp.|volume=10|pages=721|year=1968|url= http://www.iop.org/EJ/abstract/0038-5670/10/6/R01] ) and later discussed by him in details in the monograph [cite book|last=A. A. Vlasov|title=Theory of Vibrational Properties of an Electron Gas and Its Applications|year=1945] .

Difficulties of the standard kinetic approach

First, Vlasov argues that the standard kinetic approach based on Boltzmann equation has difficulties when applied for description of plasma with long-range Coulomb interaction. He mentions the following problems arising when applying the kinetic theory based on pair collisions to plasma dynamics:

# Theory of pair collisions disagree with the discovery by John Rayleigh, Irving Langmuir and Lewi Tonks of natural vibrations in electron plasma.
# Theory of pair collisions formally not applicable to Coulomb interaction due to the divergence of the kinetic terms.
# Theory of pair collisions can not explain experiments by Harrison Merrill and Harold Webb on anomalous electron scattering in gaseous plasma [cite journal|author=H. J. Merrill and H. W. Webb|title=Electron Scattering and Plasma Oscillations|journal=Phys. Rev.|volume=55|pages=1191|year=1939|url=http://prola.aps.org/abstract/PR/v55/i12/p1191_1]

Vlasov suggests that these difficulties originate from the long-range character of Coulomb interaction.

The Vlasov-Maxwell system of equations

Then, instead of collision-based kinetic description for interaction of charged particles in plasma, Vlasov suggests to use self-consistent collective field created by charged plasma particles. Such description uses distribution functions f_e(vec{r},vec{p},t) and f_i(vec{r},vec{p},t) for electrons and (positive) plasma ions. The distribution function f_{alpha}(vec{r},vec{p},t) for species alpha describes the number of particles of the species alpha having approximately the momentum vec{p} near the position vec{r} at time t. Instead of the Boltzmann equation, the following system of equations was proposed for description of charged components of plasma (electrons and positive ions):

:frac{partial f_e}{partial t} + vec{v} frac{partial f_e}{partialvec{x - eBigl(vec{E}+frac{1}{c} [vec{v},vec{B}] Bigr) frac{partial f_e}{partialvec{p = 0:frac{partial f_i}{partial t} + vec{v} frac{partial f_i}{partial vec{x + eBigl(vec{E}+frac{1}{c} [vec{v},vec{B}] Bigr) frac{partial f_i}{partial vec{p = 0:{ m rot}vec{B}=frac{4pivec{j{c}+frac{1}{c}frac{partialvec{E{partial t},quad { m rot}vec{E}=-frac{1}{c}frac{partialvec{B{partial t}:{ m div}vec{E}=4pi ho,quad { m div}vec{B}=0: ho=eint(f_i-f_e)dvec{p},quad vec{j}=eint(f_i-f_e)vec{v}dvec{p}

Here e is the electron charge, c is the speed of light, vec{E}(vec{r},t) and vec{B}(vec{r},t) represent collective self-consistent electromagnetic field created in the point vec{r} at time moment t by all plasma particles. The essential difference of this system of equations from equations for particles in external electromagnetic field is that self-consistent electromagnetic field depends in a complex way on the distribution functions of electrons and ions f_e(vec{r},vec{p},t) and f_i(vec{r},vec{p},t).

The Vlasov-Poisson equation

The Vlasov equations is a system of non-linear integro-differential equations. If the fluctuations of the distribution functions around the equilibrium are small, this system of equations can be linearized. Such linearization produces Vlasov-Poisson equations which describe the dynamics of plasma in its self-consistent electric field. The Vlasov-Poisson equations are a combination of the Vlasov equation for each species alpha (we consider the nonrelativistic zero-magnetic field limit):

:frac{partial f_{alpha{partial t} + vec{v} cdot frac{partial f_{alpha{partial vec{x + frac{q_{alpha}vec{E{m_{alpha cdot frac{partial f_{alpha{partial vec{v = 0,

and Poisson’s equation for self-consistent electric field:

: abla cdot vec{E} = -frac{partial^2phi}{partial x^2} = 4 pi ho.

Here q_{alpha} is the particle’s electric charge, m_{alpha} is the particle’s mass, vec{E}(vec{x},t) is the self-consistent electric field, phi(vec{x}, t) the self-consistent electric potential and ho is the electric charge density.

Vlasov-Poisson equations are used to describe various phenomena in plasma, in particular to study the distributions in a double layer plasma, where they are necessarily strongly non-Maxwellian, and therefore inaccessible to fluid models.

References

ee also

*A. A. Vlasov, "Many-Particle Theory and Its Application to Plasma", Gordon and Breach, 1961.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Vlasov — or Vlasoff ( ru. Власов) is a common Russian surname formed from the first name Vlas or from the Slavonic vlas meaning hair. The feminine form of the surname is Vlasova ( ru. Власова).Among notable people with this last name are: *Alexander… …   Wikipedia

  • Equation de Boltzmann — Équation de Boltzmann L équation de Boltzmann (1872) est une équation intégro différentielle de la théorie cinétique qui décrit l évolution d un gaz peu dense hors d équilibre. Elle permet notamment de démontrer le théorème H, et d étudier la… …   Wikipédia en Français

  • Équation de boltzmann — L équation de Boltzmann (1872) est une équation intégro différentielle de la théorie cinétique qui décrit l évolution d un gaz peu dense hors d équilibre. Elle permet notamment de démontrer le théorème H, et d étudier la relaxation du gaz d un… …   Wikipédia en Français

  • Équation de Boltzmann — L équation de Boltzmann (1872) est une équation intégro différentielle de la théorie cinétique qui décrit l évolution d un gaz peu dense hors d équilibre. Elle permet notamment de démontrer le théorème H, et d étudier la relaxation du gaz d un… …   Wikipédia en Français

  • Equation de Vlasov — Équation de Vlasov L équation de Vlasov décrit la dynamique des particules dans un plasma en négligeant l effet des collisions binaires sur leur trajectoire. Elle s écrit: Les champs électrique et magnétique tiennent compte des forces appliquées… …   Wikipédia en Français

  • Équation de vlasov — L équation de Vlasov décrit la dynamique des particules dans un plasma en négligeant l effet des collisions binaires sur leur trajectoire. Elle s écrit: Les champs électrique et magnétique tiennent compte des forces appliquées aux particules… …   Wikipédia en Français

  • Équation de Vlasov — L équation de Vlasov décrit l évolution temporelle de la fonction de distribution f des particules de masse m et de charge q dans un plasma ou un faisceau de particules chargées en négligeant l effet des collisions binaires. Elle s écrit: . γ est …   Wikipédia en Français

  • Anatoly Vlasov — Infobox Scientist name = Anatoly Vlasov image width = 140px caption = birth date = birth date|1908|8|20|df=y birth place = Balashov, Russian Empire death date = death date and age|1975|12|22|1908|8|20 death place = Moscow, Russia residence =… …   Wikipedia

  • Boltzmann equation — For other uses, see Boltzmann s entropy formula, Stefan–Boltzmann law and Maxwell–Boltzmann distribution The Boltzmann equation, also often known as the Boltzmann transport equation, devised by Ludwig Boltzmann, describes the statistical… …   Wikipedia

  • Fokker–Planck equation — [ thumb|A solution to the one dimensional Fokker–Planck equation, with both the drift and the diffusion term. The initial condition is a Dirac delta function in x = 1, and the distribution drifts towards x = 0.] The Fokker–Planck equation… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”