Membrane fouling

Membrane fouling

Membrane fouling is a process where solute or particles deposit onto a membrane surface or into membrane pores in a way that degrades the membrane's performance. It is a major obstacle to the widespread use of this technology. Membrane fouling can cause severe flux decline and affect the quality of the water produced. Severe fouling may require intense chemical cleaning or membrane replacement. This increases the operating costs of a treatment plant. There are various types of foulants: colloidal (clays, flocs), biological (bacteria, fungi), organic (oils, polyelectrolytes, humics) and scaling (mineral precipitates).[1]

Fouling can be divided into reversible and irreversible fouling based on the attachment strength of particles to the membrane surface. Reversible fouling can be removed by a strong shear force of backwashing. Formation of a strong matrix of fouling layer with the solute during a continuous filtration process will result in reversible fouling being transformed into an irreversible fouling layer. Irreversible fouling is the strong attachment of particles which cannot be removed by physical cleaning.[2]

Contents

Factors affecting membrane fouling

Factors that affect membrane fouling:

  1. Membrane properties such as pore size, hydrophobicity, pore size distribution and membrane material.
  2. Solution properties such as concentration, the nature of the components and particle size distribution.
  3. Operating conditions such as pH, temperature, flow rate and pressure.

Measure of membrane fouling

Flux and transmembrane pressure (TMP) are the best indicators of membrane fouling. Under constant flux operation, TMP increases to compensate for the fouling. On the other hand, under constant pressure operation, flux declines due to membrane fouling.

Fouling control

Even though membrane fouling is an inevitable phenomenon during membrane filtration, it can be minimised by strategies such as cleaning, appropriate membrane selection and choice of operating conditions.

Membranes can be cleaned physically, biologically or chemically. Physical cleaning includes sponges, water jets or backflushing using a permeate. Biological cleaning uses biocides to remove all viable microorganisms, whereas chemical cleaning involves the use of acids and bases to remove foulants and impurities.

Another strategy to minimise membrane fouling is the use of the appropriate membrane for a specific operation. The nature of the feed water must first be known; then a membrane that is less prone to fouling with that solution is chosen. For aqueous filtration, a hydrophilic membrane is preferred.

Operating conditions during membrane filtration are also vital, as they may affect fouling conditions during filtration. For instance, crossflow filtration is always preferred to dead end filtration, because turbulence generated during the filtration entails a thinner deposit layer and therefore minimises fouling.

See also

References

  1. ^ Baker, R.W. (2004). Membrane Technology and Applications, England: John Wiley & Sons Ltd
  2. ^ Choi, H., Zhang, K., Dionysiou, D.D.,Oerther, D.B.& Sorial, G.A. (2005) Effect of permeate flux and tangential flow on membrane fouling for wastewater treatment. J. Separation and Purification Technology 45: 68-78.

Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Membrane bioreactor — (MBR) is the combination of a membrane process like microfiltration or ultrafiltration with a suspended growth bioreactor, and is now widely used for municipal and industrial wastewater treatment with plant sizes up to 80,000 population… …   Wikipedia

  • Membrane emulsification — (ME) is a relatively novel technique for producing all types of single and multiple emulsions (o/w, w/o, w/w, w/o/w, o/w/o, m/w, s/o/w), e.g. for DDS (drug delivery system), solid micro carriers for encapsulation of drug or nutrient, solder… …   Wikipedia

  • Membrane technology — The membrane technology covers all process engineering measures for the transport of substances between two fractions with the help of permeable membranes. That means in general mechanical separation process for separation of gaseous or liquid… …   Wikipedia

  • Fouling — This article is about fouling in engineering. For uses of the term foul outside technology, see Foul (disambiguation). Not to be confused with fowling. Heat exchanger in a steam power plant, fouled by macro fouling …   Wikipedia

  • Thin film composite membrane — Thin film composite membranes (TFC or TFM) are semipermeable membranes manufactured principally for use in water purification or desalination systems. They also have use in chemical applications such as batteries and fuel cells.Essentially, a TFC …   Wikipedia

  • Cross-flow filtration — Diagram of cross flow filtration In chemical engineering, biochemical engineering and protein purification, crossflow filtration[1] (also known as tangential flow filtration[2 …   Wikipedia

  • Ultrafiltration (industrial) — Ultrafiltration is a type of filtration. Industries such as chemical and pharmaceutical processing, food and beverage processing, and waste water treatment, employ ultrafiltration in order to recycle flow or add value to later products. UF s main …   Wikipedia

  • Monoclonal antibodies — A general representation of the methods used to produce monoclonal antibodies. Monoclonal antibodies (mAb or moAb) are monospecific antibodies that are the same because they are made by identical immune cells that are all clones of a unique… …   Wikipedia

  • Reverse osmosis — Schematics of a reverse osmosis system (desalination) using a pressure exchanger. 1: Sea water inflow, 2: Fresh water …   Wikipedia

  • Biofouling — on a helmet in a fishtank Biofouling or biological fouling is the undesirable accumulation of microorganisms, plants, algae, and/or animals on wetted structures …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”