Cartan–Kähler theorem

Cartan–Kähler theorem

In mathematics, the Cartan–Kähler theorem is a major result on the integrability conditions for differential systems, in the case of analytic functions, for differential ideals "I". It is named for Élie Cartan and Erich Kähler.

It is not true that merely having "dI" contained in "I" is sufficient for integrability. There is a problem caused by singular solutions. The theorem computes certain constants that must satisfy an inequality in order that there be a solution.

The Cauchy-Kovalevskaya theorem is required, so the analyticity is necessary.

References

*Jean Dieudonné, "Eléments d'analyse", vol. 4, (1977) Chapt. XVIII.13

External links

*springer|first=D.V. |last=Alekseevskii|id=p/p072530|title=Pfaffian problem


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Cartan's equivalence method — In mathematics, Cartan s equivalence method is a technique in differential geometry for determining whether two geometrical structures are the same up to a diffeomorphism. For example, if M and N are two Riemannian manifolds with metrics g and h …   Wikipedia

  • Erich Kähler — à Hambourg, 1990 Erich Kähler (16 janvier 1906 31 mai 2000) est un mathématicien allemand avec des intérêts géometriques très vastes. Biographie Il est né à Leipzig et y a fait ses études. Il a été professeur à Königsberg, Leipzig …   Wikipédia en Français

  • Élie Cartan — Infobox Person name = Élie Joseph Cartan image size = 200px caption = Professor Élie Joseph Cartan birth date = birth date|1869|4|9 birth place = Dolomieu, Savoie, France death date = death date and age|1951|5|6|1869|4|9 death place = Paris,… …   Wikipedia

  • Erich Kähler — (16 January 1906 31 May 2000) was a German mathematician with wide ranging geometrical interests. Kähler was born in Leipzig, and studied there. He received his Ph.D. in 1928 from the University of Leipzig. He held professorial positions in… …   Wikipedia

  • Elie Cartan — Élie Joseph Cartan (* 9. April 1869 in Dolomieu, Dauphiné; † 6. Mai 1951 in Paris) war ein französischer Mathematiker, der bedeutende Beiträge zur Theorie der Lie Gruppen und ihrer Anwendungen lieferte. Er leistete darüber hinaus bedeutende… …   Deutsch Wikipedia

  • Elie Joseph Cartan — Élie Joseph Cartan (* 9. April 1869 in Dolomieu, Dauphiné; † 6. Mai 1951 in Paris) war ein französischer Mathematiker, der bedeutende Beiträge zur Theorie der Lie Gruppen und ihrer Anwendungen lieferte. Er leistete darüber hinaus bedeutende… …   Deutsch Wikipedia

  • Élie Joseph Cartan — (* 9. April 1869 in Dolomieu, Dauphiné; † 6. Mai 1951 in Paris) war ein französischer Mathematiker, der bedeutende Beiträge zur Theorie der Lie Gruppen und ihrer Anwendungen lieferte. Er leistete darüber hinaus bedeutende Beiträge zur… …   Deutsch Wikipedia

  • Élie Cartan — Élie Joseph Cartan (* 9. April 1869 in Dolomieu, Dauphiné; † 6. Mai 1951 in Paris) war ein französischer Mathematiker, der bedeutende Beiträge zur Theorie der Lie Gruppen und ihrer Anwendungen lieferte. Er leistete darüber hinaus bedeutende… …   Deutsch Wikipedia

  • Frobenius theorem (differential topology) — In mathematics, Frobenius theorem gives necessary and sufficient conditions for finding a maximal set of independent solutions of an overdetermined system of first order homogeneous linear partial differential equations. In modern geometric terms …   Wikipedia

  • Borel–Weil theorem — In mathematics in the field of representation theory of compact Lie groups, the Borel–Weil theorem provides a concrete model for the irreducible representations as holomorphic sections of certain complex line bundles. It can be considered as a… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”