Élie Cartan

Élie Cartan

Infobox Person
name = Élie Joseph Cartan


image_size = 200px
caption = Professor Élie Joseph Cartan
birth_date = birth date|1869|4|9
birth_place = Dolomieu, Savoie, France
death_date = death date and age|1951|5|6|1869|4|9
death_place = Paris, France
known_for = Lie groups, differential geometry
occupation = Mathematician
spouse = Marie-Louise Bianconi
children = Henri, Jean, Louis, Hélène
parents = Joseph Cartan Anne Cottaz

Élie Joseph Cartan (9 April 1869 – 6 May 1951) was an influential French mathematician, who did fundamental work in the theory of Lie groups and their geometric applications. He also made significant contributions to mathematical physics, differential geometry, and group theory.

He was the father of another influential mathematician, Henri Cartan.

Life

Élie Cartan was born in the village of Dolomieu in Isère, the son of a blacksmith. He became a student at the École Normale Supérieure in Paris in 1888 and obtained his doctorate in 1894. He subsequently held lecturing positions in Montpellier and Lyon, becoming a professor in Nancy in 1903. He took a lecturing position at the Sorbonne in Paris in 1909, becoming professor there in 1912 until his retirement in 1940. He died in Paris after a long illness.

Work

By his own account, in his "Notice sur les travaux scientifiques", the main theme of his works (numbering 186 and published throughout the period 1893–1947) was the theory of Lie groups. He began by working over the foundational material on the complex simple Lie algebras, tidying up the previous work by Friedrich Engel and Wilhelm Killing. This proved definitive, as far as the classification went, with the identification of the four main families and the five exceptional cases. He also introduced the algebraic group concept, which was not to be developed seriously before 1950.

He defined the general notion of anti-symmetric differential form, in the style now used; his approach to Lie groups through the Maurer–Cartan equations required 2-forms for their statement. At that time what were called Pfaffian systems (i.e. first-order differential equations given as 1-forms) were in general use; by the introduction of fresh variables for derivatives, and extra forms, they allowed for the formulation of quite general PDE systems. Cartan added the exterior derivative, as an entirely geometric and coordinate-independent operation. It naturally leads to the need to discuss "p"-forms, of general degree "p". Cartan writes of the influence on him of Charles Riquier’s general PDE theory.

With these basics — Lie groups and differential forms — he went on to produce a very large body of work, and also some general techniques such as moving frames, that were gradually incorporated into the mathematical mainstream.

In the "Travaux", he breaks down his work into 15 areas. Using modern terminology, they are these:

# Lie groups
# Representations of Lie groups
# Hypercomplex numbers, division algebras
# Systems of PDEs, Cartan–Kähler theorem
# Theory of equivalence
# Integrable systems, theory of prolongation and systems in involution
# Infinite-dimensional groups and pseudogroups
# Differential geometry and moving frames
# Generalised spaces with structure groups and connections, Cartan connection, holonomy, Weyl tensor
# Geometry and topology of Lie groups
# Riemannian geometry
# Symmetric spaces
# Topology of compact groups and their homogeneous spaces
# Integral invariants and classical mechanics
# Relativity, spinors

Influence and legacy

Most of these topics have been worked over thoroughly by later mathematicians. That cannot be said of all of them: while Cartan's own methods were remarkably unified, in the majority of cases the subsequent work can be said to have removed his characteristic touch. That is, it became more algebraic.

To look at some of those less mainstream areas:

* the PDE theory has to take into account singular solutions (i.e. envelopes), such as are seen in Clairaut's equation;
* the prolongation method is supposed to terminate in a system "in involution" (this is an analytic theory, rather than smooth, and leads to the theory of formal integrability and Spencer cohomology);
* the equivalence problem, as he put it, is to construct differential isomorphisms of structures (and discover thereby the invariants) by forcing their graphs to be integral manifolds of a differential system;
* the moving frames method, as well as being connected to principal bundles and their connections, should also use frames adapted to geometry;
* these days, the jet bundle method of Ehresmann is applied to use contact as a systematic equivalence relation.

There is a sense, therefore, in which the distinctive side of Cartan's work is still being digested by mathematicians. This is constantly seen in areas such as calculus of variations, Bäcklund transformations and the general theory of differential systems; roughly speaking those parts of differential algebra which feel that the existing, Galois theory-led model of symmetry is too narrow and requires something more analogous to a category of relations.

ee also

* Cartan connection, Cartan connection applications
* Cartan matrix
* Cartan's theorem
* Cartan subalgebra
* Cartan's equivalence method
* Einstein–Cartan theory
* Integrability conditions for differential systems
* CAT("k") space

References

External links

* Shiing-Shen Chern and Claude Chevalley, [http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?view=body&id=pdf_1&handle=euclid.bams/1183516693 "Élie Cartan and his mathematical work"] , Bull. Amer. Math. Soc. 58 (1952), 217-250.
* J. H. C. Whitehead, "Elie Joseph Cartan 1869-1951," Obituary Notices of Fellows of the Royal Society, Vol. 8, No. 21 (Nov., 1952), pp. 71-95.
*
*


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Elie Cartan — Élie Joseph Cartan (* 9. April 1869 in Dolomieu, Dauphiné; † 6. Mai 1951 in Paris) war ein französischer Mathematiker, der bedeutende Beiträge zur Theorie der Lie Gruppen und ihrer Anwendungen lieferte. Er leistete darüber hinaus bedeutende… …   Deutsch Wikipedia

  • Élie Cartan — Élie Cartan, né le 9 avril 1869 à Dolomieu et mort le 6 mai 1951 à Paris, est l un des mathématiciens français les plus influents de son époque. Son travail porte sur les applications géométriques des groupes de Lie …   Wikipédia en Français

  • Élie Cartan — Élie Joseph Cartan (* 9. April 1869 in Dolomieu, Dauphiné; † 6. Mai 1951 in Paris) war ein französischer Mathematiker, der bedeutende Beiträge zur Theorie der Lie Gruppen und ihrer Anwendungen lieferte. Er leistete darüber hinaus bedeutende… …   Deutsch Wikipedia

  • Elie Cartan — Élie Cartan Élie Cartan, né le 9 avril 1869 à Dolomieu et mort le 6 mai 1951 à Paris, est l un des mathématiciens français les plus influents de son époque. Son travail porte sur les applications géométriques des groupes de Lie.… …   Wikipédia en Français

  • Élie Cartan — (9 de abril 1869 6 de mayo 1951) fue un matemático Francés, quien hizo trabajos fundamentales en la teoría de grupos de Lie y sus usos geométricos. Nació en Dolomieu en Savoya, y devino estudiante de la École Normale en París en 1888. Después de… …   Enciclopedia Universal

  • Élie Cartan — Élie Joseph Cartan (Dolomieu, Saboya, 9 de abril 1869 París, 6 de mayo 1951) fue un matemático francés, que llevó a cabo trabajos fundamentales en la teoría de grupos de Lie y sus usos geométricos. Contenido 1 Biografía 2 Labor matemática …   Wikipedia Español

  • Institut Élie Cartan de Nancy — Le bâtiment accueillant l IECN sur 2 500 m2, au cœur du campus de la faculté des sciences et techniques à Vandœuvre lès Nancy. L Institut Élie Cartan de Nancy (IECN) est un institut de recherche en mathématiques appartement à l… …   Wikipédia en Français

  • Elie Joseph Cartan — Élie Joseph Cartan (* 9. April 1869 in Dolomieu, Dauphiné; † 6. Mai 1951 in Paris) war ein französischer Mathematiker, der bedeutende Beiträge zur Theorie der Lie Gruppen und ihrer Anwendungen lieferte. Er leistete darüber hinaus bedeutende… …   Deutsch Wikipedia

  • Élie Joseph Cartan — (* 9. April 1869 in Dolomieu, Dauphiné; † 6. Mai 1951 in Paris) war ein französischer Mathematiker, der bedeutende Beiträge zur Theorie der Lie Gruppen und ihrer Anwendungen lieferte. Er leistete darüber hinaus bedeutende Beiträge zur… …   Deutsch Wikipedia

  • CARTAN (É.) — Élie Cartan fut l’un des plus grands mathématiciens de son époque. Il possédait une intuition géométrique remarquable, aidée par une très grande aptitude à dominer les calculs les plus complexes. Il fut également un excellent professeur. Son… …   Encyclopédie Universelle

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”