Cardioid/Proofs

Cardioid/Proofs

Theorem

The curve defined by the parametric equations

: x(t) = 2 r left( cos t -{1 over 2} cos 2 t ight), qquad qquad (1)

: y(t) = 2 r left( sin t - {1 over 2} sin 2 t ight) qquad qquad (2)

has the same shape as the curve defined in polar coordinates by the equation

: ho( heta) = 2r(1 - cos heta).

Proof

Starting from ho( heta) = 2r(1 - cos heta), and using the polar to cartesian formulas:x = ho( heta) cos( heta) , :y = ho( heta) sin( heta) , and double angle formulas we get the cartesian parametric equations:

:x = 2r (1- cos heta) cos heta = 2r (cos heta - cos^2 heta) = 2r left( cos heta - frac{1+cos 2 heta}{2} ight) = 2r left( cos heta - frac{1}{2} cos 2 heta ight) -r ,

:y = 2r (1- cos heta) sin heta = 2r(sin heta - sin heta cos heta) = 2r left( sin heta - frac{1}{2} sin 2 heta ight),

Simply replacing heta with t yields equations (1) and (2), with a shift to the left by r.

Another proof

Equations (1) and (2) define a cardioid whose cuspidal point is (r, 0). To convert to polar, the cusp should preferably be at the origin, so subtract r from the abscissa. Replacing t by heta yields

: x( heta) = 2r left( -{1 over 2} + cos heta - {1 over 2} cos 2 heta ight) ,

: y( heta) = 2r left( sin heta - {1 over 2} sin 2 heta ight) .

The polar radius ho( heta) is given by

: ho( heta) = sqrt{x^2( heta) + y^2( heta)} :: = 2r sqrt{left( -{1 over 2} + cos heta - {1 over 2} cos 2 heta ight)^2 + left( sin heta - {1 over 2} sin 2 heta ight)^2 }.

Expanding this yields

: ho = 2r sqrt{ {1 over 4} + cos^2 heta + {1 over 4} cos^2 2 heta - cos heta + {1 over 2} cos 2 heta - cos heta cos 2 heta + sin^2 heta + {1 over 4} sin^2 2 heta - sin heta sin 2 heta}. We can simplify this by noticing that: cos^2 heta + sin^2 heta = 1, qquad qquad mbox{(trigonometric identity)}

: {1 over 4} cos^2 2 heta + {1 over 4} sin^2 2 heta = {1 over 4}, qquad qquad mbox{(variation of the above)}

and

: cos heta cos 2 heta + sin heta sin 2 heta = cos ( heta - 2 heta) = cos - heta = cos heta.

Thus,

: ho = 2r sqrt{ {1 over 4} + 1 + {1 over 4} - 2 cos heta + {1 over 2} cos 2 heta }

:: = 2r sqrt{ {3 over 2} - {4 over 2} cos heta + {1 over 2} cos 2 heta }

:: = 2r sqrt{ {3 - 4 cos heta + cos 2 heta over 2.

Then, since

: cos 2 heta = cos^2 heta - sin^2 heta = 2 cos^2 heta - 1, qquad qquad mbox{(trigonometric identity)}

it follows that

: ho = 2r sqrt{ {3 - 4 cos heta + 2 cos^2 heta - 1 over 2 = 2r sqrt{ {2 - 4 cos heta + 2 cos^2 heta over 2,

: ho = 2r sqrt{ 1 - 2 cos heta + cos^2 heta} = 2r(1 - cos heta).

Area derivation

The objective is to integrate the area of the cardioid whose equation in polar coordinates is: r = 1 - cos heta . ,!The integral is: A = iint dA = int_0^{2pi} int_0^{(1 - cos heta)} r , dr , d heta .Integration with respect to "dr" yields:egin{align} A &{}= int_0^{2pi} left [ {1 over 2} r^2 ight] _0^{(1-cos heta)} , d heta \ &{}= int_0^{2pi} {1over 2} (1 - cos heta)^2 , d heta \ &{}= int_0^{2pi} {1 over 2} (1 - 2 cos heta + cos^2 heta) , d heta.end{align} Distribute the integral among the three terms, and integrate the first two, to obtain: A = {1 over 2} left{ [ heta] _0^{2pi} - 2 [sin heta] _0^{2pi} + int_0^{2pi} cos^2 heta , d heta ight}.The second term vanishes, and integrating the third term yields:egin{align} A &{}= {1 over 2} left{ 2pi + left [ {1over 2} heta +{1over 4}sin 2 heta ight] _0^{2pi} ight} \ &{}= pi + {1over 2} left [pi + {1over 4} (sin 4pi - sin 0) ight] .end{align} The last term within brackets vanishes, so that

:: A = pi + {1 over 2}pi = {3 over 2}pi.

Cardioids of any size are all similar to each other, so increasing the cardioid's linear size by a factor of "a" increases the cardioid's areal size by a factor of "a"2, "Q.E.D." ("return to article")


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Cardioid — is closed curve with one cusp.DefinitionIn geometry, the cardioid is an epicycloid with one cusp. Construction* epicycloid produced as the path (or locus) of a point on the circumference of a circle as that circle rolls around another fixed… …   Wikipedia

  • List of mathematics articles (C) — NOTOC C C closed subgroup C minimal theory C normal subgroup C number C semiring C space C symmetry C* algebra C0 semigroup CA group Cabal (set theory) Cabibbo Kobayashi Maskawa matrix Cabinet projection Cable knot Cabri Geometry Cabtaxi number… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”