BCK algebra

BCK algebra

In mathematics, BCI and BCK algebras are algebraic structures, introduced by Y. Imai, K. Iséki and S. Tanaka in 1966, that describe fragments of the propositional calculus involving implication known as BCI and BCK logics.

Definition

BCI algebra

An algebra left( X;ast,0 ight) of type left( 2,0 ight) is called a "BCI-algebra" if, for any x,y,zin X, it satisfies the following conditions:; BCI-1: left( left( xast y ight) ast left( xast z ight) ight) ast left( zast y ight) =0; BCI-2: left( xast left( xast y ight) ight) ast y=0; BCI-3: xast x=0; BCI-4: xast y=0 and yast x=0implies x=y; BCI-5: xast 0=0 implies x=0

BCK algebra

A BCI-algebra left( X;ast ,0 ight) is called a "BCK-algebra" if itsatisfies the following condition:; BCK-1: forall xin X: 0ast x=0

Examples

Every abelian group of is a BCI-algebra, with * group subtraction and 0 the group identity.

The subsets of a set form a BCK-algebra, where A*B is the difference AB (elements in A but not in B), and 0 is the empty set.

A Boolean algebra is a BCK algebra if "A"*"B" is defined to be "A"∧¬"B" ("A" does not imply "B").

References

*citation|title=Review of several papers on BCI, BCK-Algebras
first= R. B. |last=Angell
journal= The Journal of Symbolic Logic|volume= 35|issue= 3|year=1970|pages= 465-466
url= http://links.jstor.org/sici?sici=0022-4812%28197009%2935%3A3%3C465%3AAARWAP%3E2.0.CO%3B2-C

*citation|url=http://projecteuclid.org/euclid.pja/1195522126|id=MR|0202572
last=Arai|first= Yoshinari|last2= Iséki|first2= Kiyoshi|last3= Tanaka|first3= Shôtarô
title=Characterizations of BCI, BCK-algebras
journal=Proc. Japan Acad. |volume=42|year= 1966 |pages=105-107

*springer|id=B/b110170|title=BCH algebra|first=C.S.|last= Hoo
*springer|id=B/b110180|title=BCI algebra|first=C.S.|last= Hoo
*springer|id=B/b110190|first=C.S.|last= Hoo
*citation|first=K. |last=Iséki|first2= S.|last2= Tanaka|title=An introduction to the theory of BCK-algebras" |journal=Math. Japon. |volume= 23 |year=1978|pages= 1–26
* Y. Huang, "BCI-algebra", Science Press, Beijing, 2006.
*citation|first=Y.|last= Imai|first2= K|last2= Iséki|title=On axiom systems of propositional calculi, XIV |journal=Proc. Japan Acad. Ser. A, Math. Sci. |volume= 42 |year=1966|pages= 19–22 |url=http://projecteuclid.org/euclid.pja/1195522169
*citation|first=K. |last=Iséki|title=An algebra related with a propositional calculus|journal= Proc. Japan Acad. Ser. A, Math. Sci. |volume= 42 |year=1966|pages= 26–29|url=http://projecteuclid.org/euclid.pja/1195522171


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • List of mathematics articles (B) — NOTOC B B spline B* algebra B* search algorithm B,C,K,W system BA model Ba space Babuška Lax Milgram theorem Baby Monster group Baby step giant step Babylonian mathematics Babylonian numerals Bach tensor Bach s algorithm Bachmann–Howard ordinal… …   Wikipedia

  • List of algebraic structures — In universal algebra, a branch of pure mathematics, an algebraic structure is a variety or quasivariety. Abstract algebra is primarily the study of algebraic structures and their properties. Some axiomatic formal systems that are neither… …   Wikipedia

  • Outline of algebraic structures — In universal algebra, a branch of pure mathematics, an algebraic structure is a variety or quasivariety. Abstract algebra is primarily the study of algebraic structures and their properties. Some axiomatic formal systems that are neither… …   Wikipedia

  • Condensed detachment — (Rule D) is a method of finding the most general possible conclusion given two formal logical statements. It was developed by the Irish logician Carew Meredith in the 1950s and inspired by the work of Łukasiewicz. Contents 1 Informal description… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”