Dobinski's formula

Dobinski's formula

In combinatorial mathematics, Dobinski’s formula[1] states that the number of partitions of a set of n members is

{1 \over e}\sum_{k=0}^\infty {k^n \over k!}.

This number has come to be called the nth Bell number Bn, after Eric Temple Bell.

The above formula can be seen as a particular case, for x = 0, of the more general relation:

{1 \over e}\sum_{k=x}^\infty {k^n \over (k-x)!} = \sum_{k=0}^n {n \choose k} B_{k} x^{n-k}

Probabilistic content

Those familiar with probability theory will recognize the expression given by Dobinski's formula as the nth moment of the Poisson distribution with expected value 1. Today, Dobinski's formula is sometimes stated by saying the number of partitions of a set of size n equals the nth moment of that distribution.

A proof

The proof given here is an adaptation to probabilistic language, of the proof given by Rota.[2]

Combinatorialists use the Pochhammer symbol (x)n to denote the falling factorial

(x)_n = x(x-1)(x-2)\cdots(x-n+1)\,

(whereas, in the theory of special functions, the same notation denotes the rising factorial). If x and n are nonnegative integers, 0 ≤ n ≤ x, then (x)n is the number of one-to-one functions that map a size-n set into a size-x set.

Let ƒ be any function from a size-n set A into a size-x set B. For any u ∈ B, let ƒ −1(u) = {v ∈ A : ƒ(v) = u}. Then {ƒ −1(u) : u ∈ B} is a partition of A, coming from the equivalence relation of "being in the same fiber". This equivalence relation is called the "kernel" of the function ƒ. Any function from A into B factors into

  • one function that maps a member of A to that part of the kernel to which it belongs, and
  • another function, which is necessarily one-to-one, that maps the kernel into B.

The first of these two factors is completely determined by the partition π that is the kernel. The number of one-to-one functions from π into B is (x)|π|, where |π| is the number of parts in the partition π. Thus the total number of functions from a size-n set A into a size-x set B is

\sum_\pi (x)_{|\pi|},\,

the index π running through the set of all partitions of A. On the other hand, the number of functions from A into B is clearly xn. Therefore we have

x^n = \sum_\pi (x)_{|\pi|}.\,

If X is a Poisson-distributed random variable with expected value 1, then we get that the nth moment of this probability distribution is

E(X^n) = \sum_\pi E((X)_{|\pi|}).\,

But all of the factorial moments E((X)k) of this probability distribution are equal to 1. Therefore

E(X^n) = \sum_\pi 1,\,

and this is just the number of partitions of the set A. Q.E.D.

Notes and references

  1. ^ G. Dobiński, "Summirung der Reihe \textstyle\sum\frac{n^m}{n!} für m = 1, 2, 3, 4, 5, …", Grunert's Archiv, volume 61, 1877, pages 333–336 (Internet Archive: [1]).
  2. ^ * Gian-Carlo Rota, "The Number of Partitions of a Set", American Mathematical Monthly, volume 71, number 5, May 1964, pages 498–504.

Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Bellsche Zahl — Die Bellsche Zahl, Bellzahl oder Exponentialzahl Bn ist die Anzahl der Partitionen einer n elementigen Menge. Benannt ist sie nach dem Mathematiker Eric Temple Bell. Die Folge B0, B1, B2, B3, … beginnt mit 1, 1, 2, 5, 15, 52, 203, 877, 4140,… …   Deutsch Wikipedia

  • List of mathematics articles (D) — NOTOC D D distribution D module D D Agostino s K squared test D Alembert Euler condition D Alembert operator D Alembert s formula D Alembert s paradox D Alembert s principle Dagger category Dagger compact category Dagger symmetric monoidal… …   Wikipedia

  • List of combinatorics topics — This is a list of combinatorics topics.A few decades ago it might have been said that combinatorics is little more than a way to classify poorly understood problems, and some standard remedies. Great progress has been made since 1960.This page is …   Wikipedia

  • Bell-Zahl — Die Bellsche Zahl, Bellzahl oder Exponentialzahl Bn ist die Anzahl der Partitionen einer n elementigen Menge. Benannt ist sie nach dem Mathematiker Eric Temple Bell. Es ist Inhaltsverzeichnis 1 Eigenschaften 2 Asymptotik …   Deutsch Wikipedia

  • Bellzahl — Die Bellsche Zahl, Bellzahl oder Exponentialzahl Bn ist die Anzahl der Partitionen einer n elementigen Menge. Benannt ist sie nach dem Mathematiker Eric Temple Bell. Es ist Inhaltsverzeichnis 1 Eigenschaften 2 Asymptotik …   Deutsch Wikipedia

  • Exponentialzahl — Die Bellsche Zahl, Bellzahl oder Exponentialzahl Bn ist die Anzahl der Partitionen einer n elementigen Menge. Benannt ist sie nach dem Mathematiker Eric Temple Bell. Es ist Inhaltsverzeichnis 1 Eigenschaften 2 Asymptotik …   Deutsch Wikipedia

  • List of partition topics — This is a list of partition topics, in the mathematical sense. Partition (disambiguation) lists meanings in other fields. In mathematics, a partition may be a partition of a set or an ordered partition of a set, or a partition of a graph, or a… …   Wikipedia

  • Stirling numbers of the second kind — In mathematics, Stirling numbers of the second kind, together with Stirling numbers of the first kind, are one of the two types of Stirling numbers. They commonly occur in the study of combinatorics, where they count the number of permutations.… …   Wikipedia

  • Binomial type — In mathematics, a polynomial sequence, i.e., a sequence of polynomials indexed by { 0, 1, 2, 3, ... } in which the index of each polynomial equals its degree, is said to be of binomial type if it satisfies the sequence of identities:p n(x+y)=sum… …   Wikipedia

  • Bell number — In combinatorial mathematics, the n th Bell number, named in honor of Eric Temple Bell, is the number of partitions of a set with n members, or equivalently, the number of equivalence relations on it. Starting with B 0 = B 1 = 1, the first few… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”