Denavit-Hartenberg Parameters

Denavit-Hartenberg Parameters

A commonly used convention for selecting frames of reference in robotics applications is the Denavit and Hartenberg (D-H) convention which was introduced by Jaques Denavit and Richard S. Hartenberg. In this convention, each homogeneous transformation is represented as a product of four basic transformations. The common normal between two lines was the main geometric concept that allowed Denavit and Hartenberg to find a minimal representation. The transformation is described by the following four parameters known as D-H Parameters: [Spong, M., M. Vidyasagar, ”Robot Dynamics and Control”, John Wiley and Sons, 1989, ISBN 047161243X]
* a,: length
* alpha,: twist
* d,: offset
* heta,: angle

Since only four parameters are used, the frames that can be represented this way has to satisfy two more constraints

# the x_n-axis is perpendicular to the z_{n - 1} axis
# the x_n-axis intersects z_{n - 1} axis

Every link/joint pair can be described as a coordinate transformation from the previous coordinate system to the next coordinate system.

: {}^{n - 1}T_n = operatorname{Rot}_{z_{n - 1( heta_n) cdot operatorname{Trans}_{z_{n - 1(d_n) cdot operatorname{Trans}_{x_n}(a_n) cdot operatorname{Rot}_{x_n}(alpha_n)

Note that these are 2 screws after oneanother. See Screw (motion).

The matrices mentioned above are as follows:

: operatorname{Rot}_{z_{n - 1( heta_n) = egin{pmatrix} cos heta_n & -sin heta_n & 0 & 0 \ sin heta_n & cos heta_n & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ end{pmatrix}

: operatorname{Trans}_{z_{n - 1(d_n) = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & d_n \ 0 & 0 & 0 & 1 \ end{pmatrix}

: operatorname{Trans}_{x_n}(a_n) = egin{pmatrix} 1 & 0 & 0 & a_n \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ end{pmatrix}

: operatorname{Rot}_{x_n}(alpha_n) = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & cosalpha_n & -sinalpha_n & 0 \ 0 & sinalpha_n & cosalpha_n & 0 \ 0 & 0 & 0 & 1 \ end{pmatrix}

This gives:

: operatorname{}^{n - 1}T_n = egin{pmatrix} cos heta_n & -sin heta_n cosalpha_n & sin heta_n sinalpha_n & a_n cos heta_n \ sin heta_n & cos heta_n cosalpha_n & -cos heta_n sinalpha_n & a_n sin heta_n \ 0 & sinalpha_n & cosalpha_n & d_n \ 0 & 0 & 0 & 1 \ end{pmatrix}

References


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Denavit–Hartenberg parameters — A commonly used convention for selecting frames of reference in robotics applications is the Denavit and Hartenberg (D–H) convention which was introduced by Jaques Denavit and Richard S. Hartenberg. In this convention, each homogeneous… …   Wikipedia

  • Denavit-Hartenberg-Transformation — Beispiel einer kinematischen Kette anhand eines Roboters; mit Koordinatensystemen und DH Parametern Die Denavit Hartenberg Transformation (DH Transformation) aus dem Jahr 1955 ist ein mathematisches Verfahren, das auf der Basis von homogenen… …   Deutsch Wikipedia

  • Robotics conventions — There are many conventions used in the robotics research field. This article summarises these conventions. Contents 1 Line representations 2 Non minimal vector coordinates 2.1 Plücker coordinates …   Wikipedia

  • Common normal (robotics) — A model of a robotic arm with joints. In robotics the common normal of two non intersecting joint axes is a line perpendicular to both axes.[1] The common normal can be used to characterize robot arm links, by using the common normal distance and …   Wikipedia

  • DH — DH, Dh or dh may refer to: Contents 1 Flying 2 Health 3 Measurement 4 Methods 5 Places …   Wikipedia

  • Forward kinematics — [ DOF robotic arm would use forward kinematics to determine the location of the gripper.] Forward kinematics is computation of the position and orientation of robot s end effector as a function of its joint angles. It is widely used in robotics,… …   Wikipedia

  • Linkage (mechanical) — This article is about assemblies of links designed to manage forces and movement. For other uses, see Linkage. Variable stroke engine (Autocar Handbook, Ninth edition) A mechanical linkage is an assembly of bodies connected together to manage… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”