- Parabolic cylinder function
In
mathematics , the parabolic cylinder functions arespecial function s defined as solutions to the differential equation:frac{d^2f}{dz^2} + left(az^2+bz+c ight)f=0.
This equation is found, for example, when the technique of
separation of variables is used on differential equations which are expressed inparabolic cylindrical coordinates .The above equation may be brought into two distinct forms (A) and (B) by complete the square and rescaling "z", called
H. F. Weber 's equations harv|Weber|1869::frac{d^2f}{dz^2} - left(frac{z^2}{4}+a ight)f=0 (A)and
:frac{d^2f}{dz^2} + left(frac{z^2}{4}-a ight)f=0. (B)
If
:f(a,z),
is a solution, then so are
:f(a,-z), f(-a,iz) ext{ and }f(-a,-iz).,
If
:f(a,z),
is a solution of equation (A), then
:f(-ia,ze^{ipi/4}),
is a solution of (B), and, by symmetry,
:f(-ia,-ze^{ipi/4}), f(ia,-ze^{-ipi/4}) ext{ and }f(ia,ze^{-ipi/4}),
are also solutions of (B).
olutions
There are independent even and odd solutions of the form (A). These are given by (following the notation of
Abramowitz and Stegun )::y_1(a;z) = exp(-z^2/4) ;_1F_1 left(frac{a}{2}+frac{1}{4}; ;frac{1}{2}; ; ; frac{z^2}{2} ight),,,,,, (mathrm{even})
and
:y_2(a;z) = zexp(-z^2/4) ;_1F_1 left(frac{a}{2}+frac{3}{4}; ;frac{3}{2}; ; ; frac{z^2}{2} ight),,,,,, (mathrm{odd})
where 1F_1 (a;b;z)=M(a;b;z) is the
confluent hypergeometric function .Other pairs of independent solutions may be formed from linear combinations of the above solutions (see Abramowitz and Stegun). One such pair is based upon their behavior at infinity:
:U(a,z)=frac{1}{2^xisqrt{pileft [cos(xipi)Gamma(1/2-xi),y_1(a,z)-sqrt{2}sin(xipi)Gamma(1-xi),y_2(a,z) ight]
:V(a,z)=frac{1}{2^xisqrt{pi}Gamma [1/2-a] }left [sin(xipi)Gamma(1/2-xi),y_1(a,z)+sqrt{2}cos(xipi)Gamma(1-xi),y_2(a,z) ight]
where:xi=frac{1}{4}+frac{a}{2}
"U"("a", "z") approaches zero for large values of |z| and |arg("z")| < π/2, while "V"("a", "z") diverges for large values of positive real "z" .
:lim_{|z| ightarrowinfty}U(a,z)=e^{-z^2/2}z^{-a-1/2},,,,(mathrm{for},|arg(z)|
and
:lim_{|z| ightarrowinfty}V(a,z)=sqrt{frac{2}{pie^{z^2/2}z^{a-1/2},,,,(mathrm{for},arg(z)=0)
For
half-integer values of "a", these can be re-expressed in terms ofHermite polynomials ; alternately, they can also be expressed in terms ofBessel function s.References
* Milton Abramowitz and Irene A. Stegun, eds., "
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables" 1972, Dover: New York. "(See [http://www.math.sfu.ca/~cbm/aands/page_686.htm chapter 19] .)"
*springer|id=W/w097310|title=Weber equation|first=N.Kh.|last= Rozov
*H.F. Weber, "Ueber die Integration der partiellen Differentialgleichung partial^2u/partial x^2+partial^2u/partial y^2+k^2u=0" Math. Ann. , 1 (1869) pp. 1–36
Wikimedia Foundation. 2010.