Extended Huckel method

Extended Huckel method

The extended Hückel method is a semiempirical quantum chemistry method, developed by Roald Hoffmann since 1963. [Hoffmann, R. An Extended Hückel Theory. I. Hydrocarbons. "J. Chem. Phys" 1963, "39", 1397-1412. doi|10.1063/1.1734456] It is based on the Hückel method but, while the original Hückel method only considers pi orbitals, the extended method also includes the sigma orbitals.

The extended Hückel method can be used for determining the molecular orbitals, but it is not very successful in determining the structural geometry of an organic molecule. It can however determine the relative energy of different geometrical configurations. It involves calculations of the electronic interactions in a rather simple way where the electron-electron repulsions are not explicitly included and the total energy is just a sum of terms for each electron in the molecule. The off-diagonal Hamiltonian matrix elements are given by an approximation due to Wolfsberg and Helmholz that relates them to the diagonal elements and the overlap matrix element. [ M. Wolfsberg and L. J. Helmholz Journal of Chemical Physics, 20, 837, (1952) ] :Hij = K Sij (Hii + Hjj)/2

Where K is the Wolfsberg-Helmholtz constant, and is usually given a value of 1.75. In the extended hückel method, only valence electrons are considered; the core electron energies and functions are supposed to be more or less constant between atoms of the same type. The method uses a series of parametrized energies calculated from atomic ionization potentials or theoretical methods to fill the diagonal of the Fock matrix. After filling the non-diagonal elements and diagonalizing the resulting Fock matrix, the energies (eigenvalues) and wavefunctions (egenvectors) of the valence orbitals are found.

It is common in many theoretical studies to use the extended Hückel molecular orbitals as a preliminary step to determining the molecular orbitals by a more sophisticated method such as the CNDO/2 method and ab initio quantum chemistry methods. Since the EHT basis set is fixed, the monoparticle calculated wavefunctions must be projected to the basis set where the accurate calculation is to be done. One usually does this by adjusting the orbitals in the new basis to the old ones by least squares method.As only valence electron wavefunctions are found by this method, one must fill the core electron functions by orthonormalizing the rest of the basis set with the calculated orbitals and then selecting the ones with less energy. This leads to the determination of more accurate structures and electronic properties, or in the case of ab initio methods, to somewhat faster convergence.

The method was first used by Roald Hoffmann who developed, with Robert Burns Woodward, rules for elucidating reaction mechanisms (the Woodward-Hoffmann rules). He used pictures of the molecular orbitals from extended Hückel theory to work out the orbital interactions in these cycloaddition reactions.

A closely similar method was used earlier by Hoffmann and William Lipscomb for studies of boron hydrides. [R. Hoffmann and W. N. Lipscomb, Journal of Chemical Physics, 36, 2179, (1962);37, 2872, (1962) ] [ W. N. Lipscomb "Boron Hydrides", W. A. Benjamin Inc., New York, 1963, Chaper 3 ] The off-diagonal Hamiltonian matrix elements were given as proportional to the overlap integral. ::Hij = K Sij.

This simplification of the Wolfsberg and Helmholz approximation is reasonable for boron hydrides as the diagonal elements are reasonably similar due to the small difference in electronegativity between boron and hydrogen.

The method works poorly for molecules that contain atoms of very different electronegativity. To overcome this weakness, several groups have suggested iterative schemes that depend on the atomic charge. One such method, that is still widely used in inorganic and organometallic chemistry is the Fenske-Hall method. [ Hall, M. B. and Fenske, R. F., Inorganic Chemistry, 11, 768 (1972) ] [ [http://www.chem.tamu.edu/jimp2 jimp2 program] ]

A recent program for the "extended Hückel method" is YAeHMOP which stands for "yet another extended Hückel molecular orbital package". [ "Computational Chemistry", David Young, Wiley-Interscience, 2001. Appendix A. A.3.3 pg 343, YAeHMOP ]

References

See also

*Erich Hückel
*Roald Hoffmann


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Hückel method — The Hückel method or Hückel molecular orbital method (HMO) proposed by Erich Hückel in 1930, is a very simple linear combination of atomic orbitals molecular orbitals (LCAO MO) method for the determination of energies of molecular orbitals of pi… …   Wikipedia

  • Hückel — or Huckel may refer to:* Debye Hückel equation, a method of calculating acitivty coefficients * Erich Hückel, German physicist and chemist * Hückel method, a method for the determination of energies of molecular orbitals ** Extended Hückel method …   Wikipedia

  • Methode de Huckel etendue — Méthode de Hückel étendue La méthode de Hückel étendue est une méthode quantique semi empirique, développée par Roald Hoffmann depuis 1963[1]. Elle est basée sur la méthode de Hückel mais, alors que la méthode originale de Hückel ne prend en… …   Wikipédia en Français

  • Méthode De Hückel Étendue — La méthode de Hückel étendue est une méthode quantique semi empirique, développée par Roald Hoffmann depuis 1963[1]. Elle est basée sur la méthode de Hückel mais, alors que la méthode originale de Hückel ne prend en compte que les orbitales π, la …   Wikipédia en Français

  • Méthode de Hückel étendue — La méthode de Hückel étendue est une méthode quantique semi empirique, développée par Roald Hoffmann depuis 1963[1]. Elle est basée sur la méthode de Hückel mais, alors que la méthode originale de Hückel ne prend en compte que les orbitales π, la …   Wikipédia en Français

  • Méthode de hückel étendue — La méthode de Hückel étendue est une méthode quantique semi empirique, développée par Roald Hoffmann depuis 1963[1]. Elle est basée sur la méthode de Hückel mais, alors que la méthode originale de Hückel ne prend en compte que les orbitales π, la …   Wikipédia en Français

  • Semi-empirical quantum chemistry method — Semi empirical quantum chemistry methods are based on the Hartree Fock formalism, but make many approximations and obtain some parameters from empirical data. They are very important in computational chemistry for treating large molecules where… …   Wikipedia

  • Pariser–Parr–Pople method — In molecular physics, the Pariser–Parr–Pople method applies semi empirical quantum mechanical methods to the quantitative prediction of electronic structures and spectra, in molecules of interest in the field of organic chemistry. Previous… …   Wikipedia

  • Linear combination of atomic orbitals molecular orbital method — A linear combination of atomic orbitals or LCAO is a quantum superposition of atomic orbitals and a technique for calculating molecular orbitals in quantum chemistry [Huheey, James. Inorganic Chemistry:Principles of Structure and Reactivity ] .… …   Wikipedia

  • Erich Hückel — Erich Armand Arthur Joseph Hückel (August 9, 1896 February 16, 1980) was a German physicist and physical chemist. He is known for two major contributions: *The Debye Hückel theory of electrolytic solutions *The Hückel method of approximate… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”