- Coiflet
-
Coiflets are discrete wavelets designed by Ingrid Daubechies, at the request of Ronald Coifman, to have scaling functions with vanishing moments. The wavelet is near symmetric, their wavelet functions have N / 3 vanishing moments and scaling functions N / 3 − 1, and has been used in many applications using Calderón-Zygmund Operators.[1][2]
Coiflet coefficients
Both the scaling function (low-pass filter) and the wavelet function (High-Pass Filter) must be normalised by a factor
. Below are the coefficients for the scaling functions for C6-30. The wavelet coefficients are derived by reversing the order of the scaling function coefficients and then reversing the sign of every second one (ie. C6 wavelet = {−0.022140543057, 0.102859456942, 0.544281086116, −1.205718913884, 0.477859456942, 0.102859456942}).
Mathematically, this looks like Bk = ( − 1)kCN − 1 − k where k is the coefficient index, B is a wavelet coefficient and C a scaling function coefficient. N is the wavelet index, ie 6 for C6.
Coiflets coefficients k C6 C12 C18 C24 C30 -10 -0.0002999290456692 -9 0.0005071055047161 -8 0.0012619224228619 0.0030805734519904 -7 -0.0023044502875399 -0.0058821563280714 -6 -0.0053648373418441 -0.0103890503269406 -0.0143282246988201 -5 0.0110062534156628 0.0227249229665297 0.0331043666129858 -4 0.0231751934774337 0.0331671209583407 0.0377344771391261 0.0398380343959686 -3 -0.0586402759669371 -0.0930155289574539 -0.1149284838038540 -0.1299967565094460 -2 -0.1028594569415370 -0.0952791806220162 -0.0864415271204239 -0.0793053059248983 -0.0736051069489375 -1 0.4778594569415370 0.5460420930695330 0.5730066705472950 0.5873348100322010 0.5961918029174380 0 1.2057189138830700 1.1493647877137300 1.1225705137406600 1.1062529100791000 1.0950165427080700 1 0.5442810861169260 0.5897343873912380 0.6059671435456480 0.6143146193357710 0.6194005181568410 2 -0.1028594569415370 -0.1081712141834230 -0.1015402815097780 -0.0942254750477914 -0.0877346296564723 3 -0.0221405430584631 -0.0840529609215432 -0.1163925015231710 -0.1360762293560410 -0.1492888402656790 4 0.0334888203265590 0.0488681886423339 0.0556272739169390 0.0583893855505615 5 0.0079357672259240 0.0224584819240757 0.0354716628454062 0.0462091445541337 6 -0.0025784067122813 -0.0127392020220977 -0.0215126323101745 -0.0279425853727641 7 -0.0010190107982153 -0.0036409178311325 -0.0080020216899011 -0.0129534995030117 8 0.0015804102019152 0.0053053298270610 0.0095622335982613 9 0.0006593303475864 0.0017911878553906 0.0034387669687710 10 -0.0001003855491065 -0.0008330003901883 -0.0023498958688271 11 -0.0000489314685106 -0.0003676592334273 -0.0009016444801393 12 0.0000881604532320 0.0004268915950172 13 0.0000441656938246 0.0001984938227975 14 -0.0000046098383254 -0.0000582936877724 15 -0.0000025243583600 -0.0000300806359640 16 0.0000052336193200 17 0.0000029150058427 18 -0.0000002296399300 19 -0.0000001358212135 References
- ^ G. Beylkin, R. Coifman, and V. Rokhlin (1991),Fast wavelet transforms and numerical algorithms, Comm. Pure Appl. Math., 44, pp. 141-183
- ^ Ingrid Daubechies, Ten Lectures on Wavelets, Society for Industrial and Applied Mathematics, 1992, ISBN 0-89871-274-2
Categories:- Orthogonal wavelets
- Wavelets
Wikimedia Foundation. 2010.