Health threat from cosmic rays

Health threat from cosmic rays

The health threat from cosmic rays is the danger posed by cosmic rays generated by the Sun and other stars to astronauts on interplanetary missions.Cosmic rays consists of high energy protons and other nuclei.They are one of the most important barriers standing in the way of plans for interplanetary travel by crewed spacecraft. [ [ Can People go to Mars? ] ]

The deep-space radiation environment

The radiation environment of deep space is very different from that on the earth's surface or in low earth orbit, due to the much larger flux of high-energy galactic cosmic rays (GCRs), along with radiation from solar proton events and the radiation belts.

Life on the earth's surface is protected from galactic cosmic rays by a number of factors:
# The earth's atmosphere is opaque to primary cosmic rays with energies below about 1 GeV, so only secondary radiation can reach the surface. The secondary radiation is also attentuated by absorption in the atmosphere, as well as by radioactive decay in flight of some particles, such as muons.
# Shielding by the bulk of the planet itself cuts the flux by a factor of two.
# Except for the very highest energy galactic cosmic rays, the radius of gyration in the earth's magnetic field is small enough to ensure that they are deflected away from Earth ("geomagnetic shielding");
# The sun's magnetic field has a similar effect, tending to exclude galactic cosmic rays from the plane of the ecliptic in the inner solar system.
As a result the energy input of GCRs to the atmosphere is negligible —about 10-9 of solar radiation - roughly the same as starlight. Jasper Kirkby; [ Cosmic Rays And Climate] CERN-PH-EP/2008-005 26 March 2008 ]

Of the above four factors, all but the first one apply to low earth orbit craft, such as the International Space Station (although the ISS crew gets most of its dose while passing through the Van Allen Belt).Fact|date=March 2008 Therefore, the only astronauts who have ever been exposed to a significant radiation flux from galactic cosmic rays are those in the Apollo program. Since the durations of the Apollo missions were days rather than years, the doses involved were small compared to what would occur, for example, on a crewed mission to Mars.


Like other ionizing radiation, high-energy cosmic rays can damage DNA, increasing the risk of cancer, cataracts, neurological disorders, and non-cancer mortality risks. [ [ NASA Facts: Understanding Space Radiation] ]

The Apollo astronauts reported seeing flashes in their eyeballs, which may have been galactic cosmic rays, and there is some speculation that they may have experienced a higher incidence of cancer. However, the duration of the longest Apollo flights was less than two weeks, limiting the maximum exposure. There were only 24 such astronauts, making statistical analysis of the effects nearly impossible.

The health threat depends on the flux, energy spectrum, and nuclear composition of the rays. The flux and energy spectrum depend on a variety of factors: short-term solar weather, long-term trends (such as an apparent increase since the 1950's [ [ The Cosmic Ray Radiation Dose in Interplanetary Space – Present Day and Worst-Case Evaluations] R.A. Mewaldt et al, page 103, 29th International Cosmic Ray Conference Pune (2005) 00, 101-104] ), and position in the sun's magnetic field. These factors are incompletely understood.The Mars Radiation Environment Experiment (MARIE) was launched in 2001 in order to collect more data.Estimates are that humans unshielded in interplanetary space would receive annually roughly 400 to 900 mSv (compared to 2.4 mSv on Earth) and that a Mars mission (12 months in flight and 18 months on Mars) might expose shielded astronauts to ~500 to 1000 mSv. [ [ The Cosmic Ray Radiation Dose in Interplanetary Space – Present Day and Worst-Case Evaluations] R.A. Mewaldt et al, page 103, 29th International Cosmic Ray Conference Pune (2005) 00, 101-104] These doses approach the 1 to 4 Sv career limits advised by the National Council on Radiation Protection and Measurements for Low Earth orbit activities.

The quantitative biological effects of cosmic rays are poorly known, and are the subject of ongoing research. Several experiments, both in space and on Earth, are being carried out to evaluate the exact degree of danger.Experiments at Brookhaven National Laboratory's Booster accelerator revealed that the biological damage due to a given exposure is actually about half what was previously estimated: specifically, it turns out that low energy protons cause more damage than high energy ones. This is explained by the fact that slower particles have more time to interact with molecules in the body.



Material shielding may be partially effective against galactic cosmic rays in certain energy ranges, but may actually make the problem worse for some of the higher energy rays, because more shielding causes an increased amount of secondary radiation. The aluminum walls of the ISS, for example, are believed to have a net beneficial effect. In interplanetary space, however, it is believed that aluminum shielding would have a negative net effect. [ [ Magnetic Radiation Shielding: An Idea Whose Time Has Returned? - G.Landis (1991) ] ]

Several strategies are being studied for ameliorating the effects of this radiation hazard for planned human interplanetary spaceflight:
* Spacecraft can be constructed out of hydrogen-rich plastics, rather than aluminum. [ [ NASA - Plastic Spaceships ] ]
* Material shielding has been considered. Liquid hydrogen, which would be brought along as fuel in any case, tends to give relatively good shielding, while producing relatively low levels of secondary radiation. Therefore, the fuel could be placed so as to act as a form of shielding around the crew. Water, which is necessary to sustain life, could also contribute to shielding. [ [ Cosmic rays may prevent long-haul space travel - space - 01 August 2005 - New Scientist ] ]
* Electromagnetic fields may also be a possibility. [ [ Magnetic Radiation Shielding: An Idea Whose Time Has Returned? - G.Landis (1991) ] ]

None of these strategies currently provides a method of protection that would be known to be sufficient, while using known engineering principles and conforming to likely limitations on the mass of the payload. The required amount of material shielding would be too heavy to be lifted into space. Electromagnetic shielding has a number of problems: (1) the fields act in opposite directions on positively and negatively charged particles, so shielding that excludes positively charged galactic cosmic rays will tend to attract negative ions; (2) a very large power supply would be required in order to run the electrostatic and magnetostatic generators, and superconducting materials might have to be used for magnetic coils; (3) the possible field patterns might tend to dump charged particles into one area of the spacecraft. Part of the uncertainty is that the effect of human exposure to galactic cosmic rays is poorly known in quantitative terms. NASA has a Space Radiation Shielding Program to study the problem.


Another line of research is the development of drugs that mimic and/or enhance the body's natural capacity to repair damage caused by radiation. Some of the drugs that are being considered are retinoids, which are vitamins with antioxidant properties, and molecules that retard cell division, giving the body time to fix damage before harmful mutations can be duplicated.

Timing of missions

Due to the potential negative effects of astronaut exposure to cosmic rays, solar activity may play a role in future space travel via the Forbush decrease effect. Coronal mass ejections (CMEs) can temporarily lower the local cosmic ray levels, and radiation from CMEs is easier to shield against than cosmic rays.


* Eugene N. Parker, "Shielding Space Travellers", Scientific American, March 2006.
* John Dudley Miller, "Radiation Redux", Scientific American, November 2007.

ee also

*Space weather


External links

* [ Booster Accelerator] at [ Brookhaven National Laboratory] .
* [ Space Radiation Laboratory] at BNL.

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Cosmic ray — For the film, see Cosmic Ray (film). Cosmic radiation redirects here. For some background types of cosmic radiation, see cosmic background radiation and cosmic background. The energy spectrum for cosmic rays Cosmic rays are energetic charged… …   Wikipedia

  • Galactic cosmic ray — Galactic cosmic rays (GCRs) consist of those cosmic rays that enter the solar system from the outside. They are high energy charged particles composed of protons, electrons, and fully ionized nuclei of light elements. OriginThe magnetic fields of …   Wikipedia

  • List of health topics (H) — * H. Keith H. Brodie * H. R. Cox * H. Winter Griffith * H.E.L.P. International * H1N2 * H5N1 * Habibullah Bahar Chowdhury * Habitat conservation * Hacettepe University * Hackensack University Medical Center * Haddon Matrix * Haight Ashbury Free… …   Wikipedia

  • Terraforming of Mars — Artist s conception of the process of terraforming Mars. The terraforming of Mars is the hypothetical process by which the climate, surface, and known properties of Mars would be deliberately changed with the goal of making it habitable by humans …   Wikipedia

  • Space colonization — Artist Les Bossinas 1989 concept of Mars mission Space colonization (also called space settlement, space humanization, or space habitation) is the concept of permanent human habitation outside of Earth. Although hypothetical at the present time,… …   Wikipedia

  • Moon landing conspiracy theories — Astronauts Buzz Aldrin and Neil Armstrong in NASA s training mockup …   Wikipedia

  • Colonization of the Moon — Lunar outpost redirects here. For NASA s plan to construct an outpost between 2012 and 2024, see Lunar outpost (NASA). Moonbase redirects here. For other uses, see Moonbase (disambiguation). 1986 artist concept The colonization of the Moon is the …   Wikipedia

  • Space habitat — A pair of O Neill cylinders …   Wikipedia

  • Manned mission to Mars — Concept for NASA Design Reference Mission Architecture 5.0 (2009) A manned mission to Mars has been the subject of science fiction, engineering, and scientific proposals throughout the 20th century and into the 21st century. The plans comprise… …   Wikipedia

  • Human spaceflight — Orbital Human spaceflight Name Debut Launches Vostok 1961 6 Mercury 1962 4 Voskhod 1964 2 Gemini 1965 …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”