Cone (formal languages)

Cone (formal languages)

In formal language theory, a cone is a set of formal languages that has some desirable closure properties enjoyed by some well-known sets of languages, in particular by the families of regular languages, context-free languages and the recursive languages.[1] The concept of a cone is a more abstract notion that subsumes all of these families.

More precisely, a cone is a non-empty family \mathcal{S} of languages such that, for any L \in \mathcal{S} over some alphabet Σ,

  • if h is a homomorphism from \Sigma^\ast to some \Delta^\ast, the language h(L) is in \mathcal{S};
  • if h is a homomorphism from some \Delta^\ast to \Sigma^\ast, the language h − 1(L) is in \mathcal{S};
  • if R is any regular language over Σ, then L\cap R is in \mathcal{S}.

The family of all regular languages is contained in any cone.

If one restricts the definition to homomorphisms that do not introduce the empty word λ then one speaks of a faithful cone; the inverse homomorphisms are not restricted. Within the Chomsky hierarchy, the regular languages, the context-free languages, and the recursively enumerable languages are all cones, whereas the context sensitive languages and the recursive languages are only faithful cones.

The terminology cone has a French origin. In the American oriented literature one usually speaks of a full trio. The trio corresponds to the faithful cone.

Contents

Relation to Transducers

A finite state transducer is a finite state automaton that has both input and output. It defines a transduction T, mapping a language L over the input alphabet into another language T(L) over the output alphabet. Each of the cone operations (homomorphism, inverse homomorphism, intersection with a regular language) can be implemented using a finite state transducer. And, since finite state transducers are closed under composition, every sequence of cone operations can be performed by a finite state transducer.

Conversely, every finite state transduction T can be decomposed into cone operations. In fact, there exists a normal form for this decomposition, which is commonly known as Nivat's Theorem:[2] Namely, each such T can be effectively decomposed as T(L) = g(h^{-1}(L \cap R)), where g,h are homomorphisms, and R is a regular language depending only on T.

Altogether, this means that a family of languages is a cone if it is closed under finite state transductions. This is a very powerful set of operations. For instance one easily writes a (nondeterministic) finite state transducer with alphabet {a,b} that removes every second b in words of even length (and does not change words otherwise). Since the context-free languages form a cone, they are closed under this exotic operation.

See also

Notes

References

  • Ginsburg, Seymour; Greibach, Sheila (1967). "Abstract Families of Languages". Conference Record of 1967 Eighth Annual Symposium on Switching and Automata Theory, 18-20 October 1967, Austin, Texas, USA. IEEE. pp. 128-139. 
  • Mateescu, Alexandru; Salomaa, Arto (1997). "Chapter 4: Aspects of Classical Language Theory". In Rozenberg, Grzegorz; Salomaa, Arto. Handbook of Formal Languages. Volume I: Word, language, grammar. Springer-Verlag. pp. 175–252. ISBN 3540614869. 

External links


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Cone — This disambiguation page lists articles associated with the same title. If an internal link led you here, you may wish to change the link to point directly to the intended article …   Wikipedia

  • Abstract family of languages — An abstract family of languages is a grouping of formal languages such that the membership of a language in a given family is proven by its sharing of specific characteristics with the languages already known to be of that family. A family must… …   Wikipedia

  • Indigenous languages of the Americas — Yucatec Maya writing in the Dresden Codex, ca. 11–12th century, Chichen Itza Indigenous languages of the Americas are spoken by indigenous peoples from Alaska and Greenland to the southern tip of South America, encompassing the land masses which… …   Wikipedia

  • Famille abstraite de langages — En informatique théorique, et en particulier en théorie des langages formels, le terme famille abstraite de langages réfère à une notion qui généralise des caractéristiques communes aux langage rationnels, aux langages algébriques, aux langages… …   Wikipédia en Français

  • Transduction rationnelle — En informatique théorique, en linguistique, en théorie des automates et en théorie des langages, une transduction rationnelle est une transformation de mots et de langages définie par un transducteur fini ou au moyen d une relation rationnelle.… …   Wikipédia en Français

  • Grammaire linéaire — En informatique théorique, et notamment en théorie des langages, on appelle grammaire linéaire une grammaire algébrique dont tous les membres droits de règles contiennent au plus un symbole non terminal. Un langage linéaire est un langage qui est …   Wikipédia en Français

  • Langage algébrique — En théorie des langages formels, un langage algébrique ou langage non contextuel est un langage qui peut être engendré par une grammaire algébrique. De manière équivalente un langage algébrique est un langage reconnu par automate à pile. Les… …   Wikipédia en Français

  • Geometric group theory — is an area in mathematics devoted to the study of finitely generated groups via exploring the connections between algebraic properties of such groups and topological and geometric properties of spaces on which these groups act (that is, when the… …   Wikipedia

  • religion — religionless, adj. /ri lij euhn/, n. 1. a set of beliefs concerning the cause, nature, and purpose of the universe, esp. when considered as the creation of a superhuman agency or agencies, usually involving devotional and ritual observances, and… …   Universalium

  • Argentina — /ahr jeuhn tee neuh/; Sp. /ahrdd hen tee nah/, n. a republic in S South America. 35,797,536; 1,084,120 sq. mi. (2,807,870 sq. km). Cap.: Buenos Aires. Also called the Argentine. Official name, Argentine Republic. * * * Argentina Introduction… …   Universalium

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”