- Recursively enumerable language
-
In mathematics, logic and computer science, a recursively enumerable language is a type of formal language which is also called partially decidable or Turing-acceptable. It is known as a type-0 language in the Chomsky hierarchy of formal languages. The class of all recursively enumerable languages is called RE.
Contents
Definitions
There exist three equivalent major definitions for the concept of a recursively enumerable language.
- A recursively enumerable formal language is a recursively enumerable subset in the set of all possible words over the alphabet of the language.
- A recursively enumerable language is a formal language for which there exists a Turing machine (or other computable function) which will enumerate all valid strings of the language. Note that, if the language is infinite, the enumerating algorithm provided can be chosen so that it avoids repetitions, since we can test whether the string produced for number n is "already" produced for a number which is less than n. If it already is produced, use the output for input n+1 instead (recursively), but again, test whether it is "new".
- A recursively enumerable language is a formal language for which there exists a Turing machine (or other computable function) that will halt and accept when presented with any string in the language as input but may either halt and reject or loop forever when presented with a string not in the language. Contrast this to recursive languages, which require that the Turing machine halts in all cases.
All regular, context-free, context-sensitive and recursive languages are recursively enumerable.
Post's theorem shows that RE, together with its complement co-RE, correspond to the first level of the arithmetical hierarchy.
Closure properties
Recursively enumerable languages are closed under the following operations. That is, if L and P are two recursively enumerable languages, then the following languages are recursively enumerable as well:
- the Kleene star L * of L
- the concatenation of L and P
- the union
- the intersection
Note that recursively enumerable languages are not closed under set difference or complementation. The set difference L - P may or may not be recursively enumerable. If L is recursively enumerable, then the complement of L is recursively enumerable if and only if L is also recursive.
See also
External links
- Complexity Zoo: Class RE
- Lecture slides
References
- Sipser, M. (1996), Introduction to the Theory of Computation, PWS Publishing Co.
- Kozen, D.C. (1997), Automata and Computability, Springer.
Automata theory: formal languages and formal grammars Chomsky hierarchy Type-0—Type-1———Type-2——Type-3—Grammars (no common name)Linear context-free rewriting systems etc.Tree-adjoining etc.—Languages Recursively enumerableMinimal automaton Thread automataEach category of languages is a proper subset of the category directly above it. - Any automaton and any grammar in each category has an equivalent automaton or grammar in the category directly above it.Categories:- Formal languages
- Theory of computation
Wikimedia Foundation. 2010.