Rodrigues' rotation formula

Rodrigues' rotation formula

In geometry, Rodrigues' rotation formula (named after Olinde Rodrigues) is a vector formula for a rotation in space, given its axis and angle of rotation.

Say u,v in R3 and we want to obtain a representation for the rotation vrot of the vector v around the vector u (which is assumed to have unit length) by an angle θ in the counterclockwise (i.e. positive) direction. Rodrigues' formula reads as follows:

mathbf{v}_{rot} = mathbf{v} cdot cos heta + mathbf{u} imes mathbf{v} cdot sin heta + langle mathbf{u}, mathbf{v} angle mathbf{u} cdot (1 - cos heta).

Proof of the formula

Take the vector w = v − <u,v>u, which is the projection of v on the plane orthogonal to u, and the cross product of the vectors u and v: z = u&times;v. Turn the vector w by the angle θ around the base of the vector u to obtain the projection of the rotated vector vrot:

egin{align} mathbf{w}_{rot} &= mathbf{w} cdot cos heta + mathbf{z} cdot sin heta \ &= (mathbf{v} - langle mathbf{u}, mathbf{v} angle mathbf{u}) cdot cos heta + mathbf{u} imes mathbf{v} cdot sin heta.end{align}

Notice that both the vectors w and z have the same length: |w|,|z| = |v - <u,v>u|, because the vector u is of unit length. To get the rotated vector v, we have to add back the adjustment <u,v>u. Hence

egin{align} mathbf{v}_{rot} &= (mathbf{v} - langle mathbf{u}, mathbf{v} angle mathbf{u}) cdot cos heta + mathbf{u} imes mathbf{v} cdot sin heta + langle mathbf{u}, mathbf{v} angle mathbf{u} \ &= mathbf{v} cdot cos heta + mathbf{u} imes mathbf{v} cdot sin heta + langle mathbf{u}, mathbf{v} angle mathbf{u} cdot (1 - cos heta),end{align}

which is exactly what we were looking for.

Using the annotation mathbf{u}^T mathbf{v} for the scalar product, we get:

egin{align} mathbf{v}_{rot} &= cos heta cdot mathbf{v} + sin heta cdot mathbf{u} imes mathbf{v} + (1 - cos heta) cdot mathbf{u} cdot mathbf{u}^T mathbf{v}end{align}

Substituting the cross product with matrix multiplication:

egin{align} mathbf{u} imes mathbf{v} &=left(egin{array}{ccc}0 & -u_3 & u_2 \u_3 & 0 & -u_1 \-u_2 & u_1 & 0end{array} ight) mathbf{v} = left [ mathbf{u} ight] _ imes mathbf{v}end{align}

and multiplying with the identity matrix "I", we get

egin{align} mathbf{v}_{rot} &= cos heta cdot I mathbf{v} + sin heta cdot left [ mathbf{u} ight] _ imes mathbf{v} + (1 - cos heta) cdot mathbf{u} cdot mathbf{u}^T mathbf{v} \ &= left( cos heta I + sin heta left [ mathbf{u} ight] _ imes + (1 - cos heta) mathbf{u} mathbf{u}^T ight) mathbf{v} end{align}

where the expression in the paranthesis can be identified as the rotation matrix "R":

egin{align} R = cos heta I + sin heta left [ mathbf{u} ight] _ imes + (1 - cos heta) mathbf{u} mathbf{u}^Tend{align}

External links

For another descriptive example see www.d6.com, Chris Hecker, physics section, part 4. "The Third Dimension" -- on page 3, section ``Axis and Angle", http://www.d6.com/users/checker/pdfs/gdmphys4.pdf


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Rodrigues — may refer to:*Rodrigues (island), one of the Mascarene Islands, in the Indian Ocean *Rodrigues Triple Point, a tectonic triple junction near Rodrigues Island *Rodrigues College, a secondary school on Rodrigues Island *Fr. Conceicao Rodrigues… …   Wikipedia

  • Rotation (mathematics) — Rotation of an object in two dimensions around a point O. In geometry and linear algebra, a rotation is a transformation in a plane or in space that describes the motion of a rigid body around a fixed point. A rotation is different from a… …   Wikipedia

  • Rodrigues' formula — has two possible meanings: *In geometry, short for Rodrigues rotation formula. *A formula for producing a series of expressions by repeated differentiation of some other functions. A typical application is in producing a series of orthogonal… …   Wikipedia

  • Rotation matrix — In linear algebra, a rotation matrix is a matrix that is used to perform a rotation in Euclidean space. For example the matrix rotates points in the xy Cartesian plane counterclockwise through an angle θ about the origin of the Cartesian… …   Wikipedia

  • Rotation group — This article is about rotations in three dimensional Euclidean space. For rotations in four dimensional Euclidean space, see SO(4). For rotations in higher dimensions, see orthogonal group. In mechanics and geometry, the rotation group is the… …   Wikipedia

  • Olinde Rodrigues — Benjamin Olinde Rodrigues (1795–1851), more commonly known as Olinde Rodrigues, was a French banker, mathematician, and social reformer. Rodrigues was born into a well to do Sephardi Jewish family[1] in Bordeaux. Rodrigues was awarded a doctorate …   Wikipedia

  • Rotation representation (mathematics) — In geometry a rotation representation expresses the orientation of an object (or coordinate frame) relative to a coordinate reference frame. This concept extends to classical mechanics where rotational (or angular) kinematics is the science of… …   Wikipedia

  • List of mathematics articles (R) — NOTOC R R. A. Fisher Lectureship Rabdology Rabin automaton Rabin signature algorithm Rabinovich Fabrikant equations Rabinowitsch trick Racah polynomials Racah W coefficient Racetrack (game) Racks and quandles Radar chart Rademacher complexity… …   Wikipedia

  • Logarithm of a matrix — In mathematics, a logarithm of a matrix is another matrix such that the matrix exponential of the latter matrix equals the original matrix. It is thus a generalization of the scalar logarithm and in some sense an inverse function of the matrix… …   Wikipedia

  • Формула поворота Родрига — формула, связывающая два вектора с общим началом, один из которых получен поворотом другого на известный угол вокруг оси, проходящей через их общее начало: где исходный вектор, результирующий вектор, единичный вектор оси поворо …   Википедия

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”