- Theodore Theodorsen
Infobox Person
name = Theodore Theodorsen
image_size = 140px
birth_date = birth date|1897|01|8
birth_place =Sandefjord ,Norway flagicon|Norway
death_date = 1978
death_place =Long Island ,New York ,United States flagicon|USA
occupation =Aerodynamicist
spouse = Johanne Magdelene Theodorsen
parents = Ole Christian Theodorsen
Andrea Larsen
children = Muriel Gerd-Preutz
Theodore Elliott
John WillmanTheodore Theodorsen (1897 - 1978) was an American theoretical aerodynamicist noted for his work at
NACA (the forerunner ofNASA ) and for his contributions to the study ofturbulence .Early years
Dr. Theodore Theodorsen was born in
Sandefjord , Norway on January 8, 1897 to parents Ole Christian Theodorsen, a chiefengineer in the Norwegian merchant marine and Andrea Larsen. He was the oldest of six children. Early on he showed exceptional academic promise. At one point Theodore’s father had taken examinations for amerchant marine engineer’s license. He was the only applicant who correctly answered a particularly difficult question. However to his father’s surprise his then twelve year old son was also able to solve the problem. At age sixteen, after finishing compulsory schooling, Theodorsen attended gymnasium (equivalent in the USA to senior high school-junior college) in the nearby town ofLarvik . If certain grade levels were attained one would gain a scholarship to university. Norway was then far ahead of most nations in the liberalization of education. Theodorsen’s grades were so outstanding at Larvik that he was admitted to the leading engineering university in Norway. This was theNorwegian Institute of Technology inTrondheim . In those days there were no dormitories; students rented rooms in private homes. Many of the professors in those days were fromGermany andEngland . Therefore a student at the university had to be familiar with all three languages. Theodorsen graduated with the highest grades ever attained at the university. Only in mechanical drawing was his grade less than perfect. In those days anyone who achieved perfect grades would receive the honor of an introduction to theKing of Norway .Fateful Year
In the year 1922 four significant events occurred in Theodorsen’s life: he graduated with a masters degree in mechanical engineering: he married Johanne Magdelene Hoem. Her family was a well known respected family in
Trondheim . They were married in the famous Domkirke Cathedral, the largest existing medieval church inScandinavia and the burial place of St. Olaf. The wedding party was an all-night celebration at theBritannia Hotel with one hundred guests. Also in 1922, Theodorsen was offered a position at the university as an instructor: Lastly it was during that fateful year that one of his students wasLars Onsager who became one of father’s lifelong friends. Onsager also emigrated to the USA and eventually went on to win a Nobel prize in chemistry. After some years as an instructor inNorway Theodorsen, like so many Norwegian engineers, decided to emigrate. Jobs for engineers were few and far between in Norway then. His wife’s family knew a Norwegian sea captain, then retired, living inBaltimore , USA so that became their American destination. As an aside their crossing of theAtlantic Ocean was not uneventful. Attempt #1: Ship had a minor fire so it returned to Norway for four weeks of repair. This young couple were happy to be put up in a hotel at no expense during the ship repair time. Attempt #2: While at sea the US government passed a law that said one could not bring his wife into the USA unless she had her own individual passport. Back they went to Norway. Attempt #3: All went well.Johns Hopkins University
For some time there were few job prospects in
Baltimore . Theodorsen took a job working on the third shift as an oiler at the Sparrows Point electrical generating plant located twenty miles from Baltimore. His luck soon turned.Johns Hopkins University advertised for an instructor in mechanical engineering. He obtained the position. His English was even then grammatically perfect and only slightly accented. He taught atJohns Hopkins for five years during which time his daughter Muriel Gerd-Preutz and son Theodore Elliott were born. Also then in 1928 his university friend fromNorway , Lars Onsager, came to the USA and happened to teach atJohns Hopkins for one semester. It was at that time that Onsager suggested to Theodorsen that he obtain a doctorate inPhysics . Theodorsen then followed his graduate engineering degree from the Norwegian Institute of Technology with a doctoral degree inphysics from Johns Hopkins University. His thesis dealt withthermodynamic andaerodynamic themes that were to permeate much of his later work, which was developed in two parts: 1) shock waves and explosions and 2)combustion anddetonation . Through the urging of Dr. Joseph S. Ames, president of Johns Hopkins University and Chairman of the Executive Committee of theNational Advisory Committee for Aeronautics (NACA , nowNASA ), Theodorsen came to NACA in 1929 as an associatephysicist . In that year his third child, John Willman, was born inNewport News, Virginia .National Advisory Committee for Aeronautics
The
NACA (forerunner of NASA) facility was located adjoining theLangley Air Force Base nearHampton, Virginia . This was then the only in-house research arm ofNACA and had a highly motivated young staff. The work atmosphere was very informal though competitive, with much open stimulating discussion. However, conditions were rather primitive. For example the “library” consisted of one small shelf of books. Theodorsen used as his mainstays his old reliable Hutte Mechanical Engineering Handbook and a set of the 1929 edition of the Handbuch der Physik. Within a short time Theodorsen was made head of the Physical Research Division, the other research divisions being Engine Research andAerodynamics . Langley NACA was then in the process of expanding its experimental facilities to include a Full Scale Wind Tunnel and aHydrodynamic Towing Basin for testing flying boat hulls. It happened that the proposed location of the towing basin had formerly been a bombing range. One of Theodorsen’s first activities was the invention of an instrument for detecting buried metals and on its very first use it located a live bomb. The ensuing years were highly productive ones for Theodorsen in a great variety of experimental and theoretical areas as the list of publications arranged chronologically and appended herein discloses. As an overview Theodorsen improved thin airfoil theory by introducing the angle of best streamlining, went on to develop the now classical and elegant theory of arbitrary wing sections, performed the first in-house noise research, worked on fire prevention in aircraft and on means of icing removal and prevention, contributed to the theory of open, closed and partially open wind-tunnel test sections, developed the basic theory of aircraft flutter and its verification, made early measurements of skin friction attransonic andsupersonic speeds, developed the use of freon for experimental aeroelastic work, gave damping properties of structures and expanded general propeller theory. During World War 2 Theodorsen was called on for the analysis and troubleshooting of many aircraft problems and to help devise necessary modifications.Expanding on Significant Themes
Theodorsen’s work is especially significant in that it still plays an important role in current research and technology. The theory of arbitrary airfoils based on conformal mapping developed by Theodorsen, is a model of classical applied mathematics. There is no need to go over this work in any detail as it is now described in many textbooks. It should, however, be pointed out that there are two key concepts that made Theodorsen’s approach different from and a clear improvement on the methods that preceded it such as that of
von Mises andvon Karman . One was the important use of the complex variable not in the usual form of apolynomial or power series but in the form of an exponential to power series. The equation led directly to the basic boundary value equation which, as an integral equation, represents an exact solution of the problem in terms of the givenairfoil data. This solution gave the exact pressure distribution around an airfoil of arbitrary shape. Seldom inaeronautics are solutions “exact”. This is one of the very few. The method has been automated so that complete pressure distributions for a given airfoil section can be obtained in a matter of seconds. The philosophy in Theodorsen’s approach was that an exact formulation is often simpler and preferable to an approximate one and that while approximations are essential in applied mathematics they should be delayed as far as possible. Another topic that merits discussion is Theodorsen’s work onflutter . The approach here is again direct and clean, leading to an explicit exact solution as contrasted with previous implicit and approximate results. This exactflutter solution including results for control surfaces has had a keystone role in the development of flutter methods in the United States. It has enabled an engineering feel for the effects of variables and parameters in complex situations and has been available as a model against which approximate solutions can be compared. Although Theodorsen leaned strongly toward basic theoretical analysis he usually accompanied his work with experimental verification. He was highly innovative inengineering and experimental activities where he always sought a theoretical framework or was guided by physical intuition. He was responsible for proposing a wind tunnel for flutter work which employed a mixture of air and freon with variable pressure to greatly increase the scope of research with aeroelastic models throughout theMach range and with lower horsepower requirements. TheTransonic Dynamics Wind Tunnel now used exclusively for aeroelastic research is based on the same principles. Another unique facility due to Theodorsen was the helicopter rotor tower foraerodynamic and noise research. Ideal propeller dynamics was given a definitive treatment inseveral reports and a book. Theodorsen was the earliest to obtain reliable skin-friction drag data atsubsonic ,transonic andsupersonic speeds. Another significant point is that most of the his contemporary theoretical aerodynamists were located at educational institutions and thus were not involved in practical engineering solutions. Theodorsen, on the other hand, was in addition to his great theoretical contributions an innovative practical engineer which is readily apparent when perusing his work. See attached list of his publications.Brazil, U.S. Air Force, Republic Aviation and Sikorsky Helicopters
After leaving
NACA in 1946 Theodorsen helped to organize and administer the Aeronautical Institute of Brazil (1947-1950). Then he served as Chief Scientist for the U.S. Air Force (1950-1954) during which time he did important work on the structure ofturbulence (see below). Theodorsen then became the Chief of Research for theRepublic Aviation Corporation (manufacturer of the famousP-47 Thunderbolt fighter plane of WW 2, and after the war theF-84 Thunderjet and theF-105 Thunderchief ) a post from which he retired in 1962 when he became an active consultant to the Sikorsky Helicopter Corporation where he specialized in ducted propeller work and helicopter rotors (see patent 2172334 for an example of his work in the field). It was during this time that he proposed an alternative theory of relativity.Turbulence Theory
A significant development was his contribution to the structure of
turbulence in a paper honoringLudwig Prandtl ’s 75th birthday, The universality of turbulence from microphenomena toastrophysics is well known as for example, the hypothesis that the planets have condensed from a gaseous cloud and that the angular momentum of the solar system is a result of the action ofviscosity in thenebula .Turbulence remains as the major unsolved domain offluid mechanics . Theodorsen identified the main turbulence-creating terms in the equations of motion as (q x curl q . curl curl q); he showed that two-dimensional turbulence cannot exist; thatvortex lines stretching and bending is the important mechanism and ingredient ofturbulence . He also discussed the hierarchy ofvortices (Kolmogorov ).Theory of Relativity
Although Theodorsen's life work was in aerodynamics, and he published numerous books and papers in that field, he had other interests. In particular, he wrote a paper, "Relativity and Classical Physics" which sought to show that the results of Einstein's general relativity theory could be obtained without resorting to curved space-time by a modification of Newtonian theory. The paper presents "a successful transformation of the theory of relativity into classical physics... The mathematical entities of the Einstein development have been redefined into rational physical quantities and rearranged in an organized classical framework. Einstein's 'space-time' has been eliminated and replaced by cognitive time." It was published in the Proceedings of the DKNVS Theodorsen Colloquium [Det Kongelige Norske Videnskabers Selskab, "Proceedings of the Theodorsen Colloquium, 1976"] (see "Final Years" below) and on two later occasions [cite book |author=Dowell, E. H.; Theodorsen, Theodore; Garrick, I. E.; Williams, Muriel Theodorsen |title=A Modern view and appreciation of the works of Theodore Theodorsen, physicist and engineer |publisher=American Institute of Aeronautics and Astronautics |location=New York |year=1992 |pages= |isbn=0-930403-85-1 |oclc= |doi=] [cite journal|title=Relativity and Classical Physics|journal=Galilean Electrodynamics|date=|first=Theodore|last=Theodorsen|coauthors=|year=1995|volume=6|issue=4|pages=63] , but it met with no acceptance.
Final Years
In 1976, [http://www.dknvs.no/indexeng.htm Det Kongelige Norske Videnskabers Selskab] , (The Royal Norwegian Society of Sciences and Letters), held a colloquium in his honor at
Trondheim . After a short illness, Dr. Theodorsen passed away in 1978 at the age of eighty one at his home inCenterport , Long Island, New York.References
* [http://ntrs.nasa.gov/search.jsp?Ns=ArchiveName%7C0&N=0&Ntk=AuthorList&Ntx=mode%20matchall&Ntt=theodorsen List of Publications at NASA]
* [http://scholar.google.com/scholar?as_q=&num=100&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=t-theodorsen&as_publication=&as_ylo=1897&as_yhi=1978&as_allsubj=all&hl=en&lr=&safe=off&as_eq=polyurethane+wood&client=firefox-a List of Publications from Google Scholar]
Wikimedia Foundation. 2010.