Tibor Radó

Tibor Radó

Tibor Radó (June 2 1895 – December 29 1965) was a Hungarian mathematician who moved to the USA after World War I. He was born in Budapest and between 1913 and 1915 attended the Polytechnic Institute. In World War I, he became a First Lieutenant in the Hungarian Army and was captured on the Russian Front. He escaped from a Siberian prisoner camp and, travelling thousands of miles across Arctic wasteland, managed to return to Hungary.

He received a doctorate from the University of Szeged in 1923. He taught briefly at the university and then became a research fellow in Germany for the Rockefeller Foundation. In 1929, he moved to the United States and lectured at Harvard University and the Rice Institute before obtaining a faculty position in the Department of Mathematics at Ohio State University in 1930.

In 1933, Rado published "On the Problem of Plateau". In 1935 he was granted American citizenship and published "Subharmonic Functions".

In World War II he was science consultant to the United States government, interrupting his academic career.

He became Chairman of the Department of Mathematics at Ohio State University in 1948.

His work focused on computer science in the last decade of his life and in May 1962 he published one of his most famous results in the Bell System Technical Journal: the Busy Beaver problem and its unsolvability ("On Non-Computable Functions").

External links

*MathGenealogy |id=10323
*MacTutor Biography|id=Rado
* [http://www.math.ohio-state.edu/history/biographies/rado/ Biography] from the Ohio State University and other links


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Tibor Rado — Tibor Radó (* 2. Juni 1895 in Budapest; † 12. Dezember 1965 in New Smyrna Beach, Florida) war ein ungarischer Mathematiker, bekannt für seine Arbeiten über Minimalflächen und Turingmaschinen. Leben Radó nahm an der Universität Budapest ein… …   Deutsch Wikipedia

  • Tibor Radó — (* 2. Juni 1895 in Budapest; † 12. Dezember 1965 in New Smyrna Beach, Florida) war ein ungarischer Mathematiker, bekannt für seine Arbeiten über Minimalflächen und Turingmaschinen. Leben Tibor Radó ging in Budapest zur Schule und nahm 1913 an der …   Deutsch Wikipedia

  • Tibor Radó — Pour les articles homonymes, voir Rado. Tibor Radó (2 juin 1895 à Budapest 29 décembre 1965 à New Smyrna Beach) est un mathématicien hongrois, émigré aux États Unis après la Première Guerre mondiale. Il a étudié entre 1913 et 1915 à l université… …   Wikipédia en Français

  • Rado — steht für: eine Uhrenmarke von Swatch, siehe Rado (Uhrenmarke) einen männlichen Vornamen, siehe Rado (Vorname) Rado oder Radó ist der Familienname folgender Personen: James Rado (* 1932 oder 1939), US amerikanischer Autor und Schauspieler Richard …   Deutsch Wikipedia

  • Rado — or Radó is a surname, and may refer to:* Alexander Rado (1899 1981), a Hungarian born Soviet military intelligence agent * Elisabeth Rado (1899 1986), a Yugoslavian opera singer * Gaby Rado (1955 2003), a British television journalist * James… …   Wikipedia

  • Tibor — steht für: Tibor (Comic), eine deutsche Comicserie aus den 1950er Jahren von Hansrudi Wäscher Tibor ist der Familienname folgender Personen: Eckhardt Tibor (1888–1972), ungarischer Politiker Tibor ist auch die ungarische Form des römischen Namens …   Deutsch Wikipedia

  • Rado — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Patronymes Sándor RadóSándor Radó (1899 1981), cartographe hongrois et agent soviétique James Rado (en) (1932 ), acteur …   Wikipédia en Français

  • Radó-Funktion — Fleißige Biber (auch engl. Busy Beaver) sind Turingmaschinen, die möglichst viele Einsen auf das Band schreiben, ohne in eine Endlosschleife zu geraten (d. h. die nach einer endlichen Anzahl Rechenschritte halten). Die Radó Funktion (auch… …   Deutsch Wikipedia

  • Covering problem of Rado — The covering problem of Rado is an unsolved problem in geometry concerning covering planar sets by squares. It was formulated in 1928 by Tibor Radó and has been generalized to more general shapes and higher dimensions by Richard Rado. Formulation …   Wikipedia

  • Théorème de Radó (surfaces de Riemann) — Pour les articles homonymes, voir Théorème de Rado. En géométrie complexe, le théorème de Radó, démontré par Tibor Radó en 1925, stipule que toute surface de Riemann connexe est à base dénombrable d ouverts. La surface de Prüfer (en) …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”