Feller-continuous process
- Feller-continuous process
In mathematics, a Feller-continuous process is a continuous-time stochastic process satisfying a stronger continuity property than simple sample continuity. Intuitively, a Feller-continuous process is one for which the expected value of suitable statistics of the process depends continuously on the initial condition of the process. The concept is named after Croatian-American mathematician William Feller.
Definition
Let "X" : [0, +∞) × Ω → R"n", defined on a probability space (Ω, Σ, P), be a stochastic process. For a point "x" ∈ R"n", let P"x" denote the law of "X" given initial datum "X"0 = "x", and let E"x" denote expectation with respect to P"x". Then "X" is said to be a Feller-continuous process if, for any fixed "t" ≥ 0 and any bounded, continuous and Σ-measurable function "g" : R"n" → R, E"x" ["g"("X""t")] depends continuously upon "x".
Examples
* Any process "X" whose paths are almost surely constant for all time is a Feller-continuous process, since then E"x" ["g"("X""t")] is simply "g"("x"), which, by hypothesis, depends continuously upon "x".
* Any Itō diffusion with Lipschitz-continuous drift and diffusion coefficients is a Feller-continuous process.
ee also
* Continuous stochastic process
References
* cite book
last = Øksendal
first = Bernt K.
authorlink = Bernt Øksendal
title = Stochastic Differential Equations: An Introduction with Applications
edition = Sixth edition
publisher=Springer
location = Berlin
year = 2003
id = ISBN 3-540-04758-1 (See Lemma 8.1.4)
Wikimedia Foundation.
2010.
Look at other dictionaries:
Continuous stochastic process — Not to be confused with Continuous time stochastic process. In the probability theory, a continuous stochastic process is a type of stochastic process that may be said to be continuous as a function of its time or index parameter. Continuity is a … Wikipedia
William Feller — Naissance 7 juillet 1906 Zagreb (Croatie) Décès 14 janvier 1970 … Wikipédia en Français
William Feller — Infobox Scientist box width = 300px name = Willy Feller image size = 300px caption = Vilim Willy Feller (1906 1970) birth date = July 7 1906 birth place = Zagreb, Croatia death date = January 14 1970 death place = New York, USA residence =… … Wikipedia
Feller process — In mathematics, a Feller process is a particular kind of Markov process.DefinitionsLet X be a locally compact topological space with a countable base. Let C 0( X ) denote the space of all real valued continuous functions on X which vanish at… … Wikipedia
Itō diffusion — In mathematics mdash; specifically, in stochastic analysis mdash; an Itō diffusion is a solution to a specific type of stochastic differential equation. Itō diffusions are named after the Japanese mathematician Kiyoshi Itō.OverviewA (time… … Wikipedia
List of mathematics articles (F) — NOTOC F F₄ F algebra F coalgebra F distribution F divergence Fσ set F space F test F theory F. and M. Riesz theorem F1 Score Faà di Bruno s formula Face (geometry) Face configuration Face diagonal Facet (mathematics) Facetting… … Wikipedia
Теорема Крылова — Боголюбова — В теории динамических систем под теоремами Крылова Боголюбова понимаются две теоремы, утверждающие существование инвариантных мер у «хороших» отображений, определённых на «хороших» пространствах. Теоремы доказаны математиком Н. М. Крыловым и… … Википедия
Теорема Крылова — В теории динамических систем под теоремами Крылова Боголюбова понимаются две теоремы, утверждающие существование инвариантных мер у «хороших» отображений, определённых на «хороших» пространствах. Теоремы доказаны математиком… … Википедия
wood — wood1 woodless, adj. /wood/, n. 1. the hard, fibrous substance composing most of the stem and branches of a tree or shrub, and lying beneath the bark; the xylem. 2. the trunks or main stems of trees as suitable for architectural and other… … Universalium
Wood — /wood/, n. 1. Grant, 1892 1942, U.S. painter. 2. Leonard, 1860 1927, U.S. military doctor and political administrator. * * * I Hard, fibrous material formed by the accumulation of secondary xylem produced by the vascular cambium. It is the… … Universalium