Phragmén-Lindelöf principle

Phragmén-Lindelöf principle

In mathematics, the Phragmén-Lindelöf principle is a 1908 extension by Lars Edvard Phragmén (1863-1937) and Ernst Leonard Lindelöf of the maximum modulus principle of complex analysis, to unbounded domains.

Background

In complex function theory it is known that if a function "f" is holomorphic in a bounded domain "D", and is continuous on the boundary of "D", then the maximum of |"f"| must be attained on the boundary of "D". If, however, the region "D" is not bounded, then this is no longer true, as may be seen by examining the function g(z) = exp(exp(z)) in the strip -pi/2 < mbox{Im} { z } < pi/2. The difficulty here is that the function "g" tends to infinity 'very' rapidly as "z" tends to infinity along the positive real axis.

The Phragmén-Lindelöf principle shows that in certain circumstances, and by limiting the rapidity with which "f" is allowed to tend to infinity, then it is possible to prove that "f" is actually bounded in the unbounded domain.

In the literature of complex analysis, there are many examples of the Phragmén-Lindelöf principle applied to unbounded regions of differing types, and also a version of this principle may be applied in a similar fashion to subharmonic and superharmonic functions.

Phragmén-Lindelöf principle for a sector in the complex plane

Let F(z) be a function that is holomorphic in the sector

:S = {z : -frac{pi}{4} < arg ,, z < frac{pi}{4}}

and continuous on its boundary. If

:|F(z)| leq 1 on the boundary and

:|F(z)| leq Ce^{c|z in the sector for some constants c and C, then for all points z in S we have

: |F(z)| leq 1.

Phragmén-Lindelöf principle for strips

In practice the point 0 is often transformed into the point &infin; of the Riemann sphere. This gives a version of the principle that applies to strips, for example bounded by two lines of constant real part in the complex plane. This special case is sometimes known as Lindelöf's theorem.

Other special cases

* Carlson's theorem is an application of the principle to functions bounded on the imaginary axis.

References

* cite journal
author = Pharagmén, Lars Edvard and Lindelöf, Ernst
title = Sur une extension d'un principe classique de l'analyse et sur quelques propriétés des fonctions monogénes dans le voisinage d'un point singulier
journal = Acta Math.
volume = 31
year = 1908
issue = 1
pages = 381&ndash;406
issn = 0001-5962
doi = 10.1007/BF02415450

* cite journal
last = Riesz
first = Marcel
authorlink= Marcel Riesz
title = Sur le principe de Phragmén-Lindelöf
journal = Proceedings of the Cambridge Philosophical Society
volume = 20
year = 1920
(Corr. cite journal | title = Sur le principe de Phragmén-Lindelöf | volume = 21 | year = 1921 )
* cite book
last = Titchmarsh
first = Edward Charles
authorlink= Edward Charles Titchmarsh
title = The Theory of Functions
edition = Second edition
publisher = Oxford University Press
YEAR = 1976
isbn = 0198533497
(See chapter 5)
*
* cite book
author = Stein, Elias M. and Shakarchi, Rami
title = Complex analysis
series = Princeton Lectures in Analysis, II
publisher = Princeton University Press
location = Princeton, NJ
year = 2003
isbn = 0-691-11385-8


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Lindelöf's theorem — In mathematics, Lindelöf s theorem is a result in complex analysis named after the Finnish mathematician Ernst Leonard Lindelöf. It states that a holomorphic function on a half strip in the complex plane that is bounded on the boundary of the… …   Wikipedia

  • Ernst Leonard Lindelöf —  Ne doit pas être confondu avec le producteur américain de télévision Damon Lindelof. Ernst Leonard Lindelöf (7 mars 1870 – 4 juin 1946), est un mathématicien finlandais qui travailla principalement en analyse complexe et en théorie des… …   Wikipédia en Français

  • Lars Edvard Phragmén — (né le 2 septembre 1863 à Örebro, Suède, mort le 13 mars 1937) est un mathématicien suédois. Biographie Fils d un professeur d université, il fit ses études à Uppsala puis Stockholm, et fut diplômé d Uppsala en 1889. Il devint professeur à… …   Wikipédia en Français

  • Ernst Leonard Lindelöf — Ernst Leonard Lindelöf, (7 March 1870 ndash;4 June 1946) was a Finnish topologist after whom Lindelöf space is named; he was the son of Leonard Lorenz Lindelöf and brother of the philologist Uno Lorenz Lindelöf.Lindelöf studied at the University… …   Wikipedia

  • Maximum modulus principle — A plot of the modulus of cos(z) (in red) for z in the unit disk centered at the origin (shown in blue). As predicted by the theorem, the maximum of the modulus cannot be inside of the disk (so the highest value on the red surface is somewhere… …   Wikipedia

  • Histoire de la fonction zêta de Riemann — En mathématiques, la fonction zêta de Riemann est définie comme la somme d une série particulière, dont les applications à la théorie des nombres et en particulier à l étude des nombres premiers se sont avérées essentielles. Cet article présente… …   Wikipédia en Français

  • List of mathematics articles (P) — NOTOC P P = NP problem P adic analysis P adic number P adic order P compact group P group P² irreducible P Laplacian P matrix P rep P value P vector P y method Pacific Journal of Mathematics Package merge algorithm Packed storage matrix Packing… …   Wikipedia

  • Vladimir Miklyukov — Vladimir Michaelovich Miklyukov Miklyukov, 2007 Residence Volgograd …   Wikipedia

  • Riesz–Thorin theorem — In mathematics, the Riesz–Thorin theorem, often referred to as the Riesz–Thorin interpolation theorem or the Riesz–Thorin convexity theorem is a result about interpolation of operators. It is named after Marcel Riesz and his student G. Olof… …   Wikipedia

  • Nachbin's theorem — Exponential type redirects here. For exponential types in type theory and programming languages, see Function type. In mathematics, in the area of complex analysis, Nachbin s theorem (named after Leopoldo Nachbin) is commonly used to establish a… …   Wikipedia

Share the article and excerpts

Direct link
https://en-academic.com/dic.nsf/enwiki/680998 Do a right-click on the link above
and select “Copy Link”