Kanenobu

Kanenobu

Kanenobu [兼信, 兼延, 兼言] is the name of both a Japanese swordsmith and his clan, a group that is famous for producing samurai swords, katana, wakizashi and, occasionally, spears in the style of the Mino School - Tōkaidō. The history of the family covers a period of more than 500 years.

According to Victor Harris, Keeper at the Department of Japanese Antiquities at the British Museum, the first-generation Kanenobu worked around the year 1655 in Mino province, an area that was famous for its swords.

All generations are recognized as leading swordsmiths in the koto and shinto eras, and some of his relatives are still active today. In 2004, one of Kanenobu's relatives participated in the NBTHK sword forging competition.

Little is known about the 1st and 2nd generation Kanenobu smiths. The 3rd generation of the smith signed Mutsu (no) Kami Fujiwara Kanenobu and Kambe Ju. One smith in the family was a direct pupil of Kaneuji, who founded the Shizu school.

At one of the most spectacular Japanese sword exhibitions recently held, the one held at the British Museum in London, England, one of the masterpieces displayed was a third-generation Kanenobu sword that was made sometime between 1688 and 1704.

Kanenobu specialized in the sambon sugi style of hamon and, most frequently, used the togari gunome-midare style.

NBTHK Tokubetsu Hozon Wakizashi from Mutsu no Kami Fujiwara Kanenobu, a Mino smith in 17th century

ee also

*Katana

External links

* [http://www.thebritishmuseum.ac.uk/cuttingedge/ Cutting Edge - Japanese Swords at the British Museum]
* [http://www.reninet.com/shoshin/tokai3.htm Kanenobu lineage]
* [http://www.traditionaloshigata.com/gallery/Kanenobu.jpgKanenobu oshigata]


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Kanenobu — [兼信, 兼延, 兼言] ist der Name eines japanischen Schwertschmieds und seines Clans, einer Gruppe, die für das Produzieren der Samuraiklingen, des Katana, des Wakizashi und gelegentlich der Stangen in der Art der Schule von Mino berühmt ist. Die… …   Deutsch Wikipedia

  • Samurai-Schwert — Bestandteile eines Katana und der Koshirae Montur Das Katana [ka.ta.na] ist das japanische Langschwert (Daitō). Im heute üblichen Japanischen wird der Begriff auch als allgemeine Bezeichnung für Schwert verwendet. Das Wort Katana ist die Kun… …   Deutsch Wikipedia

  • Samuraischwert — Bestandteile eines Katana und der Koshirae Montur Das Katana [ka.ta.na] ist das japanische Langschwert (Daitō). Im heute üblichen Japanischen wird der Begriff auch als allgemeine Bezeichnung für Schwert verwendet. Das Wort Katana ist die Kun… …   Deutsch Wikipedia

  • Hermann Brunn — Pour les articles homonymes, voir Brunn. Hermann Brunn était un mathématicien allemand né en 1862 et mort en 1939. Il est notamment connu pour les entrelacs brunniens, qu il utilise dans un article rédigé en 1892. L appellation entrelacs brunnien …   Wikipédia en Français

  • Chuuk — Flag of Chuuk Map of Chuuk State …   Wikipedia

  • Chapter Music — Founded June 1992 Founder Guy Blackman Genre various Country of origin Australia Location Northcote, Victoria …   Wikipedia

  • Organization of Imperial Japanese Army forces in the Pacific — Conformation of Japanese forces in Pacific lands Contents 1 Commanders in Chief of South Seas Detachment 2 Chief of Staff in South Seas Detachment 3 Commanders in Operative units, South Seas Detachment …   Wikipedia

  • Structure of the Imperial Japanese forces in the South Pacific Mandate — Structure of the Japanese Forces in South Pacific MandateJapanese garrisons on the by passed Pacific Islands 1944 ndash;1945, included South Pacific Mandate Force and nearest islands in period.South Pacific Mandate DetachmentCommander in chief of …   Wikipedia

  • Kunishi Shinano — (国司信濃; July 22, 1842 ndash; December 9, 1864) Japanese samurai in the service of Lord Mōri of Chōshū as a senior retainer. Also known as Tomosuke (朝相), Chikasuke (親相), and Kumanosuke (熊之助). Second son of Chōshū retainer Takasu Mototada, he was… …   Wikipedia

  • Unlink — In the mathematical field of knot theory, the unlink is a link that is equivalent (under ambient isotopy) to finitely many disjoint circles in the plane. * An n component link L sub; S3 is an unlink if and only if there exists n disjointly… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”