Klein transformation

Klein transformation

In quantum field theory, the Klein transformation is a redefinition of the fields to patch up the spin-statistics theorem.

Bose–Einstein

Suppose φ and χ are fields such that, if "x" and "y" are spacelike-separated points and "i" and "j" represent the spinor/tensor indices,

: [phi^i(x),phi^j(y)] = [chi^i(x),chi^j(y)] ={phi^i(x),chi^j(y)}=0.

Also suppose χ is invariant under the Z2 parity (nothing to do with spatial reflections!) mapping χ to −χ but leaving φ invariant. Obviously, free field theories always satisfy this property. Then, the Z2 parity of the number of χ particles is well defined and is conserved in time (even though the number of χ particles itself depends on the choice of which splitting into a free Hamiltonian and an interacting Hamiltonian we make in the interaction picture, which doesn't even exist for interacting theories (the number is typically infinite)). Let's denote this parity by the operator Kχ which maps χ-even states to itself and χ-odd states into their negative. Then, Kχ is involutive, Hermitian and unitary.

Needless to say, the fields φ and χ above don't have the proper statistics relations for either a boson or a fermion. i.e. they are bosonic with respect to themselves but fermionic with respect to each other. But if you look at the statistical properties alone, we find it has exactly the same statistics as the Bose–Einstein statistics. Here's why:

Define two new fields φ' and χ' as follows:

:phi'=iK_{chi}phi,

and

:chi'=K_{chi}chi.,

This redefinition is invertible (because Kχ is). Now, the spacelike commutation relations become

: [phi'^i(x),phi'^j(y)] = [chi'^i(x),chi'^j(y)] = [phi'^i(x),chi'^j(y)] =0.,

Fermi–Dirac

Now, let's work with the example where

:{phi^i(x),phi^j(y)}={chi^i(x),chi^j(y)}= [phi^i(x),chi^j(y)] =0

(spacelike-separated as usual).

Assume once again we have a Z2 conserved parity operator Kχ acting upon χ alone.

Let

:phi'=iK_{chi}phi,

and

:chi'=K_{chi}chi.,

Then

:{phi'^i(x),phi'^j(y)}={chi'^i(x),chi'^j(y)}={phi'^i(x),chi'^j(y)}=0.

More than two fields

But what if we have more than two fields? In that case, we can keep on applying the Klein transformation to each pair of fields with the "wrong" commutation/anticommutation relations until we're done.

This explains the equivalence between parastatistics and the more familiar Bose–Einstein/Fermi–Dirac statistics.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Klein [2] — Klein, 1) Jakob Theodor, Zoolog, geb. 15. Aug 1685 in Königsberg, gest. 27. Febr. 1759 in Danzig, studierte seit 1701 in Königsberg die Rechte, bereiste dann bis 1711 Deutschland, England, Holland und Tirol, wurde in Danzig Stadtsekretär, 1714… …   Meyers Großes Konversations-Lexikon

  • Klein-Gordon-Gleichung — Die Klein Gordon Gleichung (auch Klein Fock Gordon Gleichung) ist die relativistische Feldgleichung, welche die Kinematik freier skalarer Felder bzw. Teilchen (d. h. Spin 0) bestimmt. Es handelt sich dabei um eine homogene partielle… …   Deutsch Wikipedia

  • Klein quartic — In hyperbolic geometry, the Klein quartic, named after Felix Klein, is a compact Riemann surface of genus 3 with the highest possible order automorphism group for this genus, namely order 168. As such, the Klein quartic is the Hurwitz surface of… …   Wikipedia

  • Klein, Felix — ▪ German mathematician in full  Christian Felix Klein  born April 25, 1849, Düsseldorf, Prussia [Germany] died June 22, 1925, Göttingen, Germany       German mathematician whose unified view of geometry as the study of the properties of a space… …   Universalium

  • Transformation geometry — In mathematics, transformation geometry is a name for a pedagogic theory for teaching Euclidean geometry, based on the Erlangen programme. Felix Klein, who pioneered this point of view, was himself interested in mathematical education. It took… …   Wikipedia

  • Jordan-Wigner transformation — The Jordan Wigner transformation is a transformation that maps spin operators onto fermionic creation and annihilation operators. It originally was created for one dimensional lattice models, but now two dimensional analogues of the… …   Wikipedia

  • Möbius transformation — Not to be confused with Möbius transform or Möbius function. In geometry, a Möbius transformation of the plane is a rational function of the form of one complex variable z; here the coefficients a, b, c, d are complex numbers satisfying ad − …   Wikipedia

  • Hjelmslev transformation — In mathematics, the Hjelmslev transformation is an effective method for mapping an entire hyperbolic plane into a circle with a finite radius. The transformation was invented by Danish mathematician Johannes Hjelmslev. It utilizes Nikolai… …   Wikipedia

  • Diskrete Fourier-Transformation — Die Diskrete Fourier Transformation oder DFT ist eine Transformation aus dem Bereich der Fourier Analysis. Sie bildet ein zeitdiskretes, endliches Signal, welches periodisch fortgesetzt wird, auf ein diskretes, periodisches Frequenzspektrum ab,… …   Deutsch Wikipedia

  • Galilei-Transformation — Die Koordinatentransformation von einem Bezugssystem B1 in ein anderes Bezugssystem B2 nennt man Galilei Transformation, wenn sich B2 von B1 nur durch eine räumliche Parallelverschiebung, eine Zeit Translation, eine Drehung oder eine gleichförmig …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”