Hjelmslev transformation

Hjelmslev transformation

In mathematics, the Hjelmslev transformation is an effective method for mapping an entire hyperbolic plane into a circle with a finite radius. The transformation was invented by Danish mathematician Johannes Hjelmslev. It utilizes Nikolai Ivanovich Lobachevsky's 23rd theorem from his work Geometrical Investigations on the Theory of Parallels.

Lobachevsky observes, using a combination of his 16th and 23rd theorems, that it is a fundamental characteristic of hyperbolic geometry that there must exist a distinct angle of parallelism for any given line length. Let us say for the length AE, its angle of parallelism is angle BAF. This being the case, line AH and EJ will be hyperparallel, and therefore will never meet. Consequently, any line drawn perpendicular to base AE between A and E must necessarily cross line AH at some finite distance. Johannes Hjelmslev discovered from this a method of compressing an entire hyperbolic plane in to a finite circle. By applying this process to every line within the plane, one could compress this plane so that infinite spaces could be seen as planar . Hjelmslev's transformation would not yield a proper circle however. The circumference of the circle does not have a corresponding location within the plane, and therefore, the product of a Hjelmslev transformation is more aptly called a Hjelmslev Disk. Likewise, when this transformation is extended in all three dimensions, it is referred to as a Hjelmslev Ball.



frame|left|A completed Hjelmslev disk representing two ultraparallel lines

There are a few properties that are retained through the transformation which enable valuable information to be ascertained therefrom, namely:

#The image of a circle sharing the center of the transformation will be a circle about this same center.
#As a result, the images of all the right angles with one side passing through the center will be right angles.
#Any angle with the center of the transformation as its vertex will be preserved.
#The image of any straight line will be a finite straight line segment.
#Likewise, the point order is maintained throughout a transformation, i.e. if B is between A and C, the image of B will be between the image of A and the image of C.
#The image of a rectilinear angle is a rectilinear angle.

The Hjelmslev transformation and the Klein model

If we represent hyperbolic space by means of the Klein model, and take the center of the Hjelmslev transformation to be the center point of the Klein model, then the Hjelmslev transformation maps points in the unit disk to points in a disk centered at the origin with a radius less than one. Given a real number k, the Hjelmslev transformation, if we ignore rotations, is in effect what we obtain by mapping a vector u representing a point in the Klein model toku, with 0uniform scaling which sends lines to lines and so forth. To beings living in a hyperbolic space it might be a suitable way of making a map.

See also

* Hjelmslev's theorem


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Johannes Hjelmslev — Johannes Trolle Hjelmslev (* 7. April 1873 in Hørning; † 16. Februar 1950 in Kopenhagen) war ein dänischer Mathematiker, der sich mit Geometrie beschäftigte. Hjelmslev studierte in Kopenhagen, wo er 1894 seinen Abschluss machte und 1897… …   Deutsch Wikipedia

  • List of mathematics articles (H) — NOTOC H H cobordism H derivative H index H infinity methods in control theory H relation H space H theorem H tree Haag s theorem Haagerup property Haaland equation Haar measure Haar wavelet Haboush s theorem Hackenbush Hadamard code Hadamard… …   Wikipedia

  • Hyperbolic geometry — Lines through a given point P and asymptotic to line R. A triangle immersed in a saddle shape plane (a hyperbolic paraboloid), as well as two diverging ultraparall …   Wikipedia

  • LANGAGE (PHILOSOPHIES DU) — L’intérêt pour la langue est un trait dominant de la philosophie contemporaine. Non que nos contemporains soient les premiers à découvrir le langage. Celui ci a toujours été à la place d’honneur dans la philosophie, tant il est vrai que la… …   Encyclopédie Universelle

  • FORME — L’histoire du concept de forme et des théories de la forme est des plus singulières. Nous vivons dans un monde constitué de formes naturelles. Celles ci sont omniprésentes dans notre environnement et dans les représentations que nous nous en… …   Encyclopédie Universelle

  • SUBSTANCE — Une idée reçue particulièrement tenace occupe le devant de la scène philosophique depuis l’époque du positivisme d’Auguste Comte, c’est à dire depuis plus d’un siècle: l’idée selon laquelle la métaphysique serait morte avec Kant, à la fin du… …   Encyclopédie Universelle

  • SÉMANTIQUE — «La sémantique, ou comment s’en débarrasser»: jusqu’à une époque récente, l’étude du sens était volontiers considérée comme constituant pour la linguistique une sorte de rejeton indésirable, au nom sans doute de ce réalisme naïf «qui porte à… …   Encyclopédie Universelle

  • LINGUISTIQUE - Objet et méthodes — Ferdinand de Saussure a magnifiquement exprimé, voilà plus d’un demi siècle, les difficultés auxquelles se heurte une approche scientifique des faits de langage (et de tous les faits humains). Tandis que «d’autres sciences opèrent sur des sujets… …   Encyclopédie Universelle

  • linguistics — /ling gwis tiks/, n. (used with a sing. v.) the science of language, including phonetics, phonology, morphology, syntax, semantics, pragmatics, and historical linguistics. [1850 55; see LINGUISTIC, ICS] * * * Study of the nature and structure of… …   Universalium

  • STRUCTURALISME — Ce n’est pas simplement contre une conception atomiste des choses que s’est élaboré le structuralisme, notion vaine et superflue s’il s’était seulement agi de prouver que l’objet, pour être connaissable, devait être appréhendé dans un tout. Que… …   Encyclopédie Universelle

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”