Extension by definitions

Extension by definitions

In mathematical logic, more specifically in the proof theory of first-order theories, extensions by definitions formalize the introduction of new symbols by means of a definition. For example, it is common in naive set theory to introduce a symbol \emptyset for the set which has no member. In the formal setting of first-order theories, this can be done by adding to the theory a new constant \emptyset and the new axiom \forall x(x\notin\emptyset), meaning 'for all x, x is not a member of \emptyset'. It can then be proved that doing so adds essentially nothing to the old theory, as should be expected from a definition. More precisely, the new theory is a conservative extension of the old one.

Contents

Definition of relation symbols

Let T be a first-order theory and \phi(x_1,\dots,x_n) a formula of T such that x1, ..., xn are distinct and include the variables free in \phi(x_1,\dots,x_n). Form a new first-order theory T'\, from T by adding a new n-ary relation symbol R, the logical axioms featuring the symbol R and the new axiom

\forall x_1\dots\forall x_n(R(x_1,\dots,x_n)\leftrightarrow\phi(x_1,\dots,x_n)),

called the defining axiom of R.

If ψ is a formula of T'\,, let \psi^\ast be the formula of T obtained from ψ by replacing any occurrence of R(t_1,\dots,t_n) by \phi(t_1,\dots,t_n) (changing the bound variables in ϕ if necessary so that the variables occurring in the ti are not bound in \phi(t_1,\dots,t_n)). Then the following hold:

  1. \psi\leftrightarrow\psi^\ast is provable in T'\,, and
  2. T'\, is a conservative extension of T.

The fact that T'\, is a conservative extension of T shows that the defining axiom of R cannot be used to prove new theorems. The formula \psi^\ast is called a translation of ψ into T. Semantically, the formula \psi^\ast has the same meaning as ϕ, but the defined symbol R has been eliminated.

Definition of function symbols

Let T be a first-order theory (with equality) and \phi(y,x_1,\dots,x_n) a formula of T such that y, x1, ..., xn are distinct and include the variables free in \phi(y,x_1,\dots,x_n). Assume that we can prove

\forall x_1\dots\forall x_n\exists !y\phi(y,x_1,\dots,x_n)

in T, i.e. for all x1, ..., xn, there exists a unique y such that \phi(y,x_1,\dots,x_n). Form a new first-order theory T'\, from T by adding a new n-ary function symbol f, the logical axioms featuring the symbol f and the new axiom

\forall x_1\dots\forall x_n\phi(f(x_1,\dots,x_n),x_1,\dots,x_n),

called the defining axiom of f.

If ψ is an atomic formula of T'\,, define a formula \psi^\ast of T recursively as follows. If the new symbol f does not occur in ψ, let \psi^\ast be ψ. Otherwise, choose an occurrence of f(t_1,\dots,t_n) in ψ, and let χ be obtained from ψ be replacing that occurrence by a new variable z. Then since f occurs in χ one less time than in ψ, the formula \chi^\ast has already been defined, and we let \psi^\ast be

\forall z(\phi(z,t_1,\dots,t_n)\rightarrow\chi^\ast)

(changing the bound variables in ϕ if necessary so that the variables occurring in the ti are not bound in \phi(z,t_1,\dots,t_n)). For a general formula ψ, the formula \psi^\ast is formed by replacing every occurrence of an atomic subformula χ by \chi^\ast. Then the following hold:

  1. \psi\leftrightarrow\psi^\ast is provable in T'\,, and
  2. T'\, is a conservative extension of T.

The formula \psi^\ast is called a translation of ψ into T. As in the case of relation symbols, the formula \psi^\ast has the same meaning as ψ, but the new symbol f has been eliminated.

The construction of this paragraph also works for constants, which can be viewed as 0-ary function symbols.

Extensions by definitions

A first-order theory T'\, obtained from T by successive introductions of relation symbols and function symbols as above is called an extension by definitions of T. Then T'\, is a conservative extension of T, and for any formula ψ of T'\, we can form a formula \psi^\ast of T, called a translation of ψ into T, such that \psi\leftrightarrow\psi^\ast is provable in T'\,. Such a formula is not unique, but any two of them can be proved to be equivalent in T.

In practice, an extension by definitions T'\, of T is not distinguished from the original theory T. In fact, the formulas of T'\, can be thought of as abbreviating their translations into T. The manipulation of these abbreviations as actual formulas is then justified by the fact that extensions by definitions are conservative.

Examples

  • Traditionally, the first-order set theory ZF has = (equality) and \in (membership) as its only primitive relation symbols, and no function symbols. In everyday mathematics, however, many other symbols are used such as the binary relation symbol \subseteq, the constant \emptyset, the unary function symbol P (the power-set operation), etc. All of these symbols belong in fact to extensions by definitions of ZF.
  • Let T be a first-order theory for groups in which the only primitive symbol is the binary product \cdot. In T, we can prove that there exists a unique element y such that x.y=y.x=x for every x. Therefore we can add to T a new constant e and the axiom
\forall x(x\cdot e=x\text{ and }e\cdot x=x),

and what we obtain is an extension by definitions T'\, of T. Then in T'\, we can prove that for every x, there exists a unique y such that x.y=y.x=e. Consequently, the first-order theory T''\, obtained from T'\, by adding a unary function symbol f and the axiom

\forall x(x\cdot f(x)=e\text{ and }f(x)\cdot x=e)

is an extension by definitions of T. Usually, f(x) is denoted x − 1.

Bibliography

  • S.C. Kleene (1952), Introduction to Metamathematics, D. Van Nostrand
  • E. Mendelson (1997). Introduction to Mathematical Logic (4th ed.), Chapman & Hall.
  • J.R. Shoenfield (1967). Mathematical Logic, Addison-Wesley Publishing Company (reprinted in 2001 by AK Peters)

Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Extension De Galois — En mathématiques, une extension de Galois (parfois nommée extension galoisienne) est une extension de corps finie normale séparable. L ensemble des automorphismes de l extension possède une structure de groupe appelé groupe de Galois. Cette… …   Wikipédia en Français

  • Extension de galois — En mathématiques, une extension de Galois (parfois nommée extension galoisienne) est une extension de corps finie normale séparable. L ensemble des automorphismes de l extension possède une structure de groupe appelé groupe de Galois. Cette… …   Wikipédia en Français

  • Extension galoisienne — Extension de Galois En mathématiques, une extension de Galois (parfois nommée extension galoisienne) est une extension de corps finie normale séparable. L ensemble des automorphismes de l extension possède une structure de groupe appelé groupe de …   Wikipédia en Français

  • Extension Algébrique — En mathématiques et plus particulièrement en algèbre, une extension algébrique L sur un corps K est une extension de corps dans laquelle tous les éléments sont algébriques sur K c’est à dire sont racines d un polynôme non nul à coefficients dans… …   Wikipédia en Français

  • Extension algebrique — Extension algébrique En mathématiques et plus particulièrement en algèbre, une extension algébrique L sur un corps K est une extension de corps dans laquelle tous les éléments sont algébriques sur K c’est à dire sont racines d un polynôme non nul …   Wikipédia en Français

  • Extension Séparable — Une extension algébrique L d un corps K est dite séparable si et seulement si le polynôme minimal de tout élément de L n admet que des racines simples. Ce critère est une hypothèse nécessaire pour établir un théorème important de la théorie de… …   Wikipédia en Français

  • Extension separable — Extension séparable Une extension algébrique L d un corps K est dite séparable si et seulement si le polynôme minimal de tout élément de L n admet que des racines simples. Ce critère est une hypothèse nécessaire pour établir un théorème important …   Wikipédia en Français

  • Extension Simple — En mathématiques et plus précisément en algèbre dans le cas de la théorie de Galois, une extension de corps L d un corps K est dite simple si et seulement s il existe un élément l de L tel que L est égal à K[l]. Une extension simple est finie si… …   Wikipédia en Français

  • Extension de Galois — En mathématiques, une extension de Galois (parfois nommée extension galoisienne) est une extension de corps finie normale séparable. L ensemble des automorphismes de l extension possède une structure de groupe appelé groupe de Galois. Cette… …   Wikipédia en Français

  • Extension séparable — Une extension algébrique L d un corps K est dite séparable si le polynôme minimal de tout élément de L n admet que des racines simples (dans une clôture algébrique de K). La séparabilité est une des propriétés des extensions de Galois. Toute… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”