Engel theorem

Engel theorem

In representation theory, Engel's theorem is one of the basic theorems in the theory of Lie algebras; it asserts that for a Lie algebra two concepts of nilpotency are identical. A useful form of the theorem says that if a Lie algebra L of matrices consists of nilpotent matrices, then they can all be simultaneously brought to a strictly upper triangular form. The theorem is named after the mathematician Friedrich Engel.

A linear operator "T" on a vector space "V" is nilpotent if and only if there is a positive integer "k" such that "T""k" = 0. For example, any operator given by a matrix whose entries are zero on and below its diagonal is nilpotent.

: A= egin{bmatrix}0 & a_{1 2} & a_{1 3} & cdots & a_{1 n} \0 & 0 & a_{2 3} & cdots & a_{2 n} \vdots & vdots & vdots & ddots & vdots \0 & 0 & 0 & cdots & 0 end{bmatrix}. An element "x" of a Lie algebra L is ad-nilpotent if and only if the linear operator on L defined by

: operatorname{ad}x (y) = [x,y]

is nilpotent. Note that in the Lie algebra "L"("V") of linear operators on "V", the identity operator I"V" is ad-nilpotent (because ad I"V" is 0) but is not a nilpotent operator.

A Lie algebra L is nilpotent if and only if the lower central series defined recursively by

: mathbf{L}^0 = mathbf{L}, quad mathbf{L}^{i+1} = [mathbf{L}, mathbf{L}^i]

eventually reaches {0}.

Theorem. A finite-dimensional Lie algebra L is nilpotent if and only if every element of L is ad-nilpotent.

Note that no assumption on the underlying base field is required.

The key lemma in the proof of Engel's theorem is the following factabout Lie algebras of linear operators on finite dimensional vector spaces which is useful in its own right:

Let L be a Lie subalgebra of "L"("V"). Then L consists of nilpotent operators if and only if there is a sequence

: V_0 subsetneq V_1 subsetneq cdots subsetneq V_n

of subspaces of "V" such that

: mathbf{L} , V_{i+1} subseteq V_i, quad forall i leq n-1.

Thus Lie algebras of nilpotent operators are simultaneously strictly upper-diagonalizable.

See also

* Lie's theorem

References

* Erdmann, Karin & Wildon, Mark. "Introduction to Lie Algebras", 1st edition, Springer, 2006. ISBN 1-84628-040-0
* G. Hochschild, "The Structure of Lie Groups", Holden Day, 1965.
* J. Humphreys, "Introduction to Lie Algebras and Representation Theory", Springer, 1972.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Theorem der endlos tippenden Affen — Durch zufälliges Tippen von unendlicher Dauer auf einer Schreibmaschine werden mit Sicherheit alle Texte Shakespeares oder diverser Nationalbibliotheken entstehen. Das Infinite Monkey Theorem (v. engl. infinite „unendlich“; monkey „Affe“; theorem …   Deutsch Wikipedia

  • Engel group — In mathematics, an element x of a Lie group or a Lie algebra is called an n Engel element, named after Friedrich Engel, if it satisfies the n Engel condition that the repeated commutator [ x , y ] , y ] , ..., y ] with n copies of y is trivial… …   Wikipedia

  • Friedrich Engel (mathematician) — Infobox Scientist box width = name = Friedrich Engel image size = caption = birth date = birth date|1861|12|26 birth place = Lugau, Saxony, Germany death date = death date and age|1941|9|29|1861|12|26 death place = Giessen, Hessen, Germany… …   Wikipedia

  • Infinite-Monkey-Theorem — Durch zufälliges Tippen von unendlicher Dauer auf einer Schreibmaschine werden mit Sicherheit alle Texte Shakespeares oder einer beliebigen Nationalbibliothek entstehen. Das Infinite Monkey Theorem (engl. infinite „unendlich“, monkey „Affe“ und… …   Deutsch Wikipedia

  • Infinite Monkey Theorem — Durch zufälliges Tippen von unendlicher Dauer auf einer Schreibmaschine werden mit Sicherheit alle Texte Shakespeares oder diverser Nationalbibliotheken entstehen. Das Infinite Monkey Theorem (v. engl. infinite „unendlich“; monkey „Affe“; theorem …   Deutsch Wikipedia

  • Infinite monkey theorem — Durch zufälliges Tippen von unendlicher Dauer auf einer Schreibmaschine werden mit Sicherheit alle Texte Shakespeares oder diverser Nationalbibliotheken entstehen. Das Infinite Monkey Theorem (v. engl. infinite „unendlich“; monkey „Affe“; theorem …   Deutsch Wikipedia

  • Unendlich-viele-Affen-Theorem — Durch zufälliges Tippen von unendlicher Dauer auf einer Schreibmaschine werden mit Sicherheit alle Texte Shakespeares oder diverser Nationalbibliotheken entstehen. Das Infinite Monkey Theorem (v. engl. infinite „unendlich“; monkey „Affe“; theorem …   Deutsch Wikipedia

  • List of mathematics articles (E) — NOTOC E E₇ E (mathematical constant) E function E₈ lattice E₈ manifold E∞ operad E7½ E8 investigation tool Earley parser Early stopping Earnshaw s theorem Earth mover s distance East Journal on Approximations Eastern Arabic numerals Easton s… …   Wikipedia

  • C0-semigroup — In mathematics, a C0 semigroup, also known as a strongly continuous one parameter semigroup, is a generalization of the exponential function. Just as exponential functions provide solutions of scalar linear constant coefficient ordinary… …   Wikipedia

  • Orch-OR — (Orchestrated Objective Reduction) is a theory of consciousness, which is the joint work of theoretical physicist Sir Roger Penrose and anesthesiologist Stuart Hameroff. Mainstream theories assume that consciousness emerges from the brain, and… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”