Bombieri norm

Bombieri norm

In mathematics, the Bombieri norm, named after Enrico Bombieri, is a norm on homogeneous polynomials with coefficient in mathbb R or mathbb C (there is also a version for univariate polynomials). This norm has many remarkable properties, the most important being listed in this article.

Bombieri scalar product for homogeneous polynomials with "N" variables

This norm comes from a scalar product which can be defined as follows:forall alpha,eta in mathbb{N}^N we have langle X^alpha | X^eta angle = 0 if alpha eq eta

: forall alpha in mathbb{N}^N we define ||X^alpha||^2 = frac{|alpha|!}{alpha!}.

In the above definition and in the rest of this article we use the following notation:

if alpha = (alpha_1,dots,alpha_N) in mathbb{N}^N, we write |alpha| = Sigma_{i=1}^N alpha_i andalpha! = Pi_{i=1}^N (alpha_i!) and X^alpha = Pi_{i=1}^N X_i^{alpha_i}.

Bombieri inequality

The most remarkable property of this norm is the Bombieri inequality:

let P,Q be two homogeneous polynomials respectively of degree d^circ(P) and d^circ(Q) with N variables, then, the following inequality holds:

: frac{d^circ(P)!d^circ(Q)!}{(d^circ(P)+d^circ(Q))!}||P||^2 , ||Q||^2 leq
|Pcdot Q||^2 leq ||P||^2 , ||Q||^2.

In fact Bombieri inequality is the left hand side of the above statement, the right and side means that Bombieri norm is a norm of algebra (giving only the left hand side is meaningless, because in this case, we can achieve the same result with any norm by multiplying the norm by a well chosen factor).

This result means that the product of two polynomials can not be arbitrarily small and this is fundamental.

Invariance by isometry

Another important property is that the Bombieri norm is invariant by composition with an
isometry:

let P,Q be two homogeneous polynomials of degree d with N variables and let h be an isometryof mathbb R^N (or mathbb C^N). Then, the we have langle Pcirc h|Qcirc h angle = langle P|Q angle. When P=Q this implies ||Pcirc h||=||P||.

This result follows from a nice integral formulation of the scalar product:

: langle P|Q angle = {d+N-1 choose N-1} int_{S^N} P(Z)Q(Z),dsigma(Z)

where S^N is the unit sphere of mathbb C^N with its canonical measure dsigma(Z).

Other inequalities

Let P be a homogeneous polynomial of degree d with N variables and let Z in mathbb C^N. We have:

* |P(Z)| leq ||P|| , ||Z||_E^d
* || abla P(Z)||_E leq d ||P|| , ||Z||_E^d

where ||.||_E denotes the Euclidean norm.

References

* B. Beauzamy, E. Bombieri, P. Enflo and H.L. Montgomery. "Product of polynomials in many variables", "journal of number theory", pages 219--245, 1990.


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Per Enflo — Born 1944 Stockholm, Sweden …   Wikipedia

  • List of mathematics articles (B) — NOTOC B B spline B* algebra B* search algorithm B,C,K,W system BA model Ba space Babuška Lax Milgram theorem Baby Monster group Baby step giant step Babylonian mathematics Babylonian numerals Bach tensor Bach s algorithm Bachmann–Howard ordinal… …   Wikipedia

  • Mahler measure — In mathematics, the Mahler measure M(p) of a polynomial p is Here p is assumed complex valued and is the Lτ norm of p (although this is not a true norm for values of τ < 1). It can be shown that if …   Wikipedia

  • Ennio de Giorgi — (* 8. Februar 1928 in Lecce; † 25. Oktober 1996 in Pisa) war ein einflussreicher italienischer Mathematiker. Er leistete entscheidende Beiträge auf den Gebiet der Minimalflächen, der Variationsrechnung und partieller Differentialgleichungen. Er… …   Deutsch Wikipedia

  • Large sieve — In mathematics, the large sieve is a method of analytic number theory. As the name implies, it was developed in sieve theory, (for example) sifting from an integer sequence by means of congruence conditions modulo prime numbers in which a… …   Wikipedia

  • Liste des articles de mathematiques — Projet:Mathématiques/Liste des articles de mathématiques Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou probabilités et statistiques via l un des trois bandeaux suivants  …   Wikipédia en Français

  • Projet:Mathématiques/Liste des articles de mathématiques — Cette page n est plus mise à jour depuis l arrêt de DumZiBoT. Pour demander sa remise en service, faire une requête sur WP:RBOT Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou… …   Wikipédia en Français

  • Faltings' theorem — In number theory, the Mordell conjecture is the conjecture made by Mordell (1922) that a curve of genus greater than 1 over the field Q of rational numbers has only finitely many rational points. The conjecture was later generalized by replacing… …   Wikipedia

  • David Mumford — in 1975 Born 11 June 1937 (1937 06 11) (age 74) …   Wikipedia

  • Minkowski's theorem — In mathematics, Minkowski s theorem is the statement that any convex set in Rn which is symmetric with respect to the origin and with volume greater than 2n d(L) contains a non zero lattice point. The theorem was proved by Hermann Minkowski in… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”