- Siegel's lemma
In
transcendental number theory andDiophantine approximation , Siegel's lemma refers to bounds on the solutions of linear equations obtained by the construction ofauxiliary function s. The existence of these polynomials was proven byAxel Thue [cite journal|last = Thue|first = Axel|authorlink = Axel Thue|title = Über Annäiherungswerte algebraischer Zahlen|journal = J. Reine Angew. Math.|journallink=Crelle|volume=135|date = 1909|pages = 284-305] ; Thue's proof usedDirichlet's box principle .Carl Ludwig Siegel published his lemma in 1929 [cite journal|last = Siegel|first = Carl Ludwig|authorlink = Carl Ludwig Siegel|title = Über einige Anwendungen diophantischer Approximationen|journal = Abh. Pruess. Akad. Wiss. Phys. Math. Kl.|date = 1929|pages = 41-69] . It is a pureexistence theorem for asystem of linear equations .Siegel's lemma has been refined in recent years to produce sharper bounds on the estimates given by the lemma. [cite journal|last = Bombieri|first = E.|authorlink = Enrico Bombieri|coauthors = Mueller, J.|title = On effective measures of irrationality for and related numbers|journal = Journal für die reine und angewandte Mathematik|volume = 342|date = 1983|pages = 173-196]
tatement
Suppose we are given a system of "M" linear equations in "N" unknowns such that "N" > "M", say
:
:
:
where the coefficients are rational integers, not all 0, and bounded by "B". The system then has a solution
:
with the "X"s all rational integers, not all 0, and bounded by
: [cite journal|last = Bombieri|first = E.|coauthors = Vaaler, J.|title = On Siegel's lemma|journal = Inventiones Mathematicae|volume = 73|issue = 1|date = Feb 1983|pages = 11–32|url = http://www.springerlink.com/content/k55042224131lp42|doi = 10.1007/BF01393823]
ee also
*
Diophantine approximation References
* M. Hindry and J.H. Silverman, "Diophantine geometry",
Springer Verlag , 2000, ISBN 0-387-98981-1. Page 316.
Wikimedia Foundation. 2010.