Dynamic convex hull

Dynamic convex hull

The dynamic convex hull problem is a class of dynamic problems in computational geometry. The problem consists in the maintenance, i.e., keeping track, of the convex hull for the dynamically changing input data, i.e., when input data elements may be inserted, deleted, or modified. Problems of this class may be distinguished by the types of the input data and the allowed types of modification of the input data.

Planar point set

It is easy to construct an example for which the convex hull contains all input points, but after the insertion of a single point the convex hull becomes a triangle. And conversely, the deletion of a single point may produce the opposite drastic change of the size of the output. Therefore if the convex hull is required to be reported in traditional way as a polygon, the lower bound for the worst-case computational complexity of the recomputation of the convex hull is Ω(N), since this time is required for a mere reporting of the output. This lower bound is attainable, because several general-purpose convex hull algorithms run in linear time when input points are ordered in some way and logarithmic-time methods for dynamic maintenance of ordered data are well-known.

This problem may be overcome by eliminating the restriction on the output representation. There are data structures that can maintain representations of the convex hull in an amount of time per update that is much smaller than linear. For many years the best algorithm of this type was that of Overmars and van Leeuwen (1981), which took time O(log2 n) per update, but it has since been improved by Timothy M. Chan and others.

In a number of applications finding the convex hull is a step in an algorithm for the solution of the overall problem. The selected representation of the convex hull may influence on the computational complexity of further operations of the overall algorithm. For example, the point in polygon query for a convex polygon represented by the ordered set of its vertices may be answered in logarithmic time, which would be impossible for convex hulls reported by the set of it vertices without any additional information. Therefore some research of dynamic convex hull algorithms involves the computational complexity of various geometric search problems with convex hulls stored in specific kinds of data structures. The mentioned approach of Overmars and van Leeuwen allows for logarithmic complexity of various common queries.

References


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Convex hull algorithms — Algorithms that construct convex hulls of various objects have a broad range of applications in mathematics and computer science, see Convex hull applications . In computational geometry, numerous algorithms are proposed for computing the convex… …   Wikipedia

  • Computational geometry — is a branch of computer science devoted to the study of algorithms which can be stated in terms of geometry. Some purely geometrical problems arise out of the study of computational geometric algorithms, and such problems are also considered to… …   Wikipedia

  • List of mathematics articles (D) — NOTOC D D distribution D module D D Agostino s K squared test D Alembert Euler condition D Alembert operator D Alembert s formula D Alembert s paradox D Alembert s principle Dagger category Dagger compact category Dagger symmetric monoidal… …   Wikipedia

  • K-set (geometry) — In discrete geometry, a k set of a finite point set S in the Euclidean plane is a subset of k elements of S that can be strictly separated from the remaining points by a line. More generally, in Euclidean space of higher dimensions, a k set of a… …   Wikipedia

  • Pseudotriangle — In Euclidean plane geometry, a pseudotriangle is the simply connected subset of the plane that lies between any three mutually tangent convex sets. A pseudotriangulation is a partition of a region of the plane into pseudotriangles, and a pointed… …   Wikipedia

  • Non-convexity (economics) — In economics, non convexity refers to violations of the convexity assumptions of elementary economics. Basic economics textbooks concentrate on consumers with convex preferences (that do not prefer extremes to in between values) and convex budget …   Wikipedia

  • Linear programming — (LP, or linear optimization) is a mathematical method for determining a way to achieve the best outcome (such as maximum profit or lowest cost) in a given mathematical model for some list of requirements represented as linear relationships.… …   Wikipedia

  • Fractional cascading — In computer science, fractional cascading is a technique to speed up a sequence of binary searches for the same value in a sequence of related data structures. The first binary search in the sequence takes a logarithmic amount of time, as is… …   Wikipedia

  • Voronoi diagram — The Voronoi diagram of a random set of points in the plane (all points lie within the image). In mathematics, a Voronoi diagram is a special kind of decomposition of a given space, e.g., a metric space, determined by distances to a specified… …   Wikipedia

  • List of algorithms — The following is a list of the algorithms described in Wikipedia. See also the list of data structures, list of algorithm general topics and list of terms relating to algorithms and data structures.If you intend to describe a new algorithm,… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”