- Dekatron
-
In electronics, a Dekatron (or Decatron, or generically three-phase gas counting tube or glow-transfer counting tube or cold cathode tube) is a gas-filled decade counting tube. Dekatrons were used in computers, calculators and other counting-related products during the 1950s and 1960s. "Dekatron," now a generic trademark, was the brand name used by the British Ericsson Telephones Limited (ETL), of Beeston, Nottingham (not the Swedish TelefonAB L. M. Ericsson, of Stockholm).
The dekatron was useful for computing, calculating and frequency-dividing purposes because one complete revolution of the neon dot in a dekatron means 10 pulses on the guide electrode(s), and a signal can be derived from one of the ten cathodes in a dekatron to send a pulse, possibly for another counting stage. Dekatrons generally have a maximum input frequency in the high kilohertz (kHz) range — 100 kHz is fast, 1 MHz is around the maximum possible. These frequencies are obtained in hydrogen-filled fast dekatrons. Dekatrons filled with inert gas are inherently more stable and have a longer life, but their counting frequency is limited to 10 kHz (1–2 kHz is more common).
Internal designs vary by the model and manufacturer, but generally a dekatron has ten cathodes and one or two guide electrodes plus a common anode. The cathodes are arranged in a circle with a guide electrode (or two) between each cathode. When the guide electrode(s) is pulsed properly, the neon gas will activate near the guide pins then "jump" to the next cathode. Pulsing the guide electrodes (negative going pulses) repeatedly will cause the neon dot to move from cathode to cathode.
Hydrogen dekatrons require high voltages ranging from 400 to 600 volts on the anode for proper operation; dekatrons with inert gas usually require ~350 volts. When a dekatron is first powered up, a glowing dot appears at a random cathode; the tube must then be reset to zero state, by driving a negative pulse into the designated starting cathode. The color of the dot depends on the type of gas that is in the tube. Neon-filled tubes display a red-orange dot; argon-filled tubes display a purple dot (and are much dimmer than neon).
Some dekatrons have only one cathode wired to its own socket pin and the remaining nine cathodes tied together to another pin. Other dekatrons have all ten cathodes wired to their own individual pins. The latter allows for monitoring the "status" of each cathode or to divide-by-n with the proper reset circuitry. This kind of versatility made such dekatrons useful for numerical division in early calculators.
Dekatrons come in various physical sizes, ranging from smaller than a 7-pin miniature vacuum tube to as large as an octal base tube. While most dekatrons are decimal counters, models were also made to count in base-5 and base-12 for specific applications.
The dekatron fell out of practical use when transistor-based counters became reliable and affordable. Today, dekatrons are used by electronic hobbyists in simple "spinners" that run off the mains frequency (50Hz or 60Hz) or as a numeric indicator for homemade clocks.
See also
- Sumlock ANITA calculator — The world's first desktop electronic calculators, which used Dekatrons.
- WITCH — Early British relay based computer that used Dekatrons.
References
- Nixie Indicators and Decimal Counting Tubes (Tom Jennings)
- Calculator Electronics: Vacuum Tubes (Thermionic Valves), Cold-Cathode Switching Tubes & Dekatron Counter Tubes (Vintage Calculators Web Museum)
- Spinner for European mains
- Spinner for American mains
- Information and photos of dekatrons In English and German.
- Comprehensive dekatron table (Vintage Technology Association)
Categories:- Switching tubes
- Gas-filled tubes
- Vacuum tube displays
- Digital registers
Wikimedia Foundation. 2010.