Weyl transformation

Weyl transformation

:"See also Weyl quantization, for another definition of the Weyl transform."

In theoretical physics, the Weyl transformation is a local rescaling of the metric tensor:

:g_{ab} ightarrow g_{ab} exp(2omega(x))

The invariance of a theory or an expression under this transformation is called the Weyl symmetry. It is an important symmetry in conformal field theory - for example a symmetry of the Polyakov action.

Note that the ordinary affine connection (and also spin connection) are no longer covariantunder Weyl transformations. To restore covariance, we need to introduce a Weyl connection.

Let's say we have a scalar field with a conformal dimension of Δ. (The metric has a conformaldimension of -2). Then, under a Weyl transformation,

: phi o phi e^{-Delta omega}

and unless Δ=0, the partial derivative is no longer Weyl covariant. We need to introduce aWeyl connection which goes as

: A_mu o A_mu + partial_mu omega

Then, D_mu phi equiv partial_mu phi + Delta A_mu phi is now covariant and has a conformal dimension of Delta + 1.

For more, see Weyl curvature.


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Weyl quantization — In mathematics and physics, in the area of quantum mechanics, Weyl quantization is a method for systematically associating a quantum mechanical Hermitian operator with a classical kernel function in phase space invertibly. A synonym is phase… …   Wikipedia

  • Weyl-Quantisierung — Die Weyl Quantisierung ist eine Methode in der Quantenmechanik, um systematisch einen quantenmechanischen Hermiteschen Operator umkehrbar auf eine klassische Verteilung im Phasenraum abzubilden. Daher wird sie auch Phasenraum Quantisierung… …   Deutsch Wikipedia

  • Transformation contraco — Articles scientifiques sur les tenseurs Généralités Tenseur Mathématiques Tenseur (mathématiques) Produit tensoriel ... de deux modules ... de deux applications linéaires Algèbre tensorielle Champ tensoriel Espace tensoriel …   Wikipédia en Français

  • Weyl-Brauer matrices — In mathematics, particularly in the theory of spinors, the Weyl Brauer matrices are an explicit realization of a Clifford algebra as a matrix algebra. They generalize to n dimensions the Pauli matrices. They are named for Richard Brauer and… …   Wikipedia

  • Weyl-Spinor — Ein Spinor ist in der Mathematik, und dort speziell in der Differentialgeometrie, ein Vektor in einer kleinsten Darstellung (ρ,V) einer Spin Gruppe. Die Spin Gruppe ist isomorph zu einer Teilmenge einer Clifford Algebra, jede Clifford Algebra ist …   Deutsch Wikipedia

  • List of topics named after Hermann Weyl — This is a list of topics named after Hermann Weyl, the influential German mathematician. * Weyl algebra * Weyl basis of the gamma matrices * Weyl chamber * Weyl character formula * Weyl s criterion * Weyl curvature: see Weyl tensor * Weyl… …   Wikipedia

  • Tenseur de weyl — Articles scientifiques sur les tenseurs Généralités Tenseur Mathématiques Tenseur (mathématiques) Produit tensoriel ... de deux modules ... de deux applications linéaires Algèbre tensorielle Champ tensoriel Espace tensoriel …   Wikipédia en Français

  • Tenseur de Weyl — En géométrie riemannienne, le tenseur de Weyl, nommé en l honneur d Hermann Weyl, représente la partie du tenseur de Riemann ne possédant pas de trace. Sommaire 1 Formule principale 2 Interprétation physique 3 Propriétés …   Wikipédia en Français

  • Interval exchange transformation — In mathematics, an interval exchange transformation is a kind of dynamical system that generalises the idea of a circle rotation. The phase space consists of the unit interval, and the transformation acts by cutting the interval into several… …   Wikipedia

  • Wigner quasi-probability distribution — See also Wigner distribution, a disambiguation page. The Wigner quasi probability distribution (also called the Wigner function or the Wigner Ville distribution) is a special type of quasi probability distribution. It was introduced by Eugene… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”