- Fluid inclusions
Fluid inclusions are microscopic bubbles of liquid and gas that are trapped within
crystal s. Asmineral s often form from a liquid or aqueous medium, tinybleb s of that liquid can become trapped within the crystal structure or in healed fractures within a crystal. These small inclusions range in size from 0.1 to 1 mm and are usually only visible in detail by microscopic study.These inclusions occur in a wide variety of environments. For example they are found within cementing minerals of
sedimentary rocks , ingangue minerals such asquartz orcalcite inhydrothermal vein deposits, in fossilamber , and in deepice cores from theGreenland andAntarctic ice caps. The inclusions can provide information about the conditions existing during the formation of the enclosing mineral.Hydrothermal
ore minerals typically form from high temperature aqueous solutions. The trapped fluid in an inclusion preserves a record of the composition, temperature and pressure of the mineralizing environment. An inclusion often contains two or more phases. If a vapor bubble is present in the inclusion along with a liquid phase, simple heating of the inclusion to the point of resorption of the vapor bubble gives a likely temperature of the original fluid. If minute crystals are present in the inclusion, such ashalite ,sylvite ,hematite , or sulfides are present, they provide direct clues as to the composition of the original fluid.In the recent years, fluid inclusion research has been extensively applied to understand the role of fluids in the deep crust and crust-mantle interface. Fluid inclusions trapped within granulite facies rocks have provided important clues on the petrogenesis of dry granulite facies rocks through the influx of CO2-rich fluids from sub-lithospheric sources. CO2-rich fluid inclusions were also recorded from a number of ultrahigh-temperature granulite facies terranes suggesting the involvement of CO2 in extreme crustal metamorphism. Some of the recent studies speculate that CO2 derived by sub-solidus decarbonation reactions during extreme metamorphism has contributed to the deglaciation of the snowball Earth (Santosh and Omori, 2008).
Paleoclimate applications
Trapped bubbles of air and water within fossil amber can be analyzed to provide direct evidence of the climate conditions existing when the resin or tree sap formed. The analysis of these trapped bubbles of air provides a record of atmosphere composition going back 140 million years. The data indicate that the oxygen content of the atmosphere reached a high of nearly 35% during the
Cretaceous Period and then plummeted to near present levels during the earlyTertiary [http://minerals.cr.usgs.gov/gips/na/0amber.htm#amber] . The abrupt decline corresponds to or closely follows theCretaceous-Tertiary extinction event and may be the result of a majormeteorite impact that created theChicxulub Crater .Air bubbles trapped within the deep ice caps can also be analyzed for clues to ancient climate conditions.
References
*http://minerals.cr.usgs.gov/gips/0fluid.htmdead link|date=September 2008 Fluid inclusions - USGS
*http://minerals.cr.usgs.gov/gips/na/0amber.htm#amberdead link|date=September 2008 Amber inclusion
* [http://www.unileoben.ac.at/~buero62/minpet/Fluid_Inc_Lab/Flinc_Lab.html#what What are fluid inclusions]
* [http://www.nuigalway.ie/chem/AlanR/ARyderPage2.html Fluid Inclusion Research at NUI, Galway.]
* [http://www.ambarazul.com/newsletter/may06 Dino Breath: fluid and air inclusions in Dominican Amber] Santosh, M., Omori, S., CO2 windows from mantle to atmosphere: Models on ultrahigh-temperature metamorphism and speculations on the link with melting of snowball Earth. Gondwana Research 14, in press, doi:10.1016/j.gr.2007.11.001, 2008.
Wikimedia Foundation. 2010.