# Edgeworth's limit theorem

Edgeworth's limit theorem

Edgeworth's limit theorem is an economic theorem created by Francis Ysidro Edgeworth that examines a range of possible outcomes which may result from free market exchange or barter between groups of people. It shows that while the precise location of the final settlement (the ultimate division of goods) between the parties is indeterminate, there is a range of potential outcomes which shrinks as the number of traders increases.

Theoretical outline

Francis Ysidro Edgeworth first described what later became known as the limit theorem in his book "Mathematical Psychics" (1881). He used a variant of what is now known as the Edgeworth box (with quantities traded, rather than quantities possessed, on the relevant axes) to analyse trade between groups of traders of various sizes. In general he found that 'Contract without competition is indeterminate, contract with perfect competition is perfectly determinate, [and] contract with more or less perfect competition is less or more indeterminate.'

This was Edgeworth's key finding - the result of trade between two people can be predicted within a certain range but the exact outcome is indeterminate. This finding was (erroneously) disputed by Alfred MarshallFact|date=March 2007 and the discussions between the two on this point is known as the barter controversy.

Trade with less than perfect competition

If a third pair of traders is added, the core of the market shrinks further. If trade occurs at the limit where B(1) gets all the gains from trade, the point P is now two thirds of the way along the line EC. This improves the bargaining power of the A's who are able to get onto a higher indifference curve as B's compete to trade with them. The outer limit of final settlement where there are multiple pairs of traders can be generalised ("Figure 4") where K = (n-1)/n.

If there is a sufficient number of traders, the core of the market will shrink such that the point of final settlement is perfectly determinate ("Figure 5"). This point is equal to the price-taking equilibrium at which trade is assumed to take place at in models of perfect competition.

Generalisation

This analysis can be modified to accommodate traders who are not identical or who have motivations which aren't purely selfish as well as the situation where one group of traders is larger than the other. If the traders are heterogeneous the point P will not reflect a "split the difference" trade between the group of traders and the outer limit of trade determined by this point will be modified accordingly. If the utility of one trader(s) influences the utility of another (ie. the latter is not selfish) then the associated limit of the contract curve will shrink inwards, ruling out the most inequitable trades. If the groups of traders are differently sized, the outer limits of the contract curve will not shrink an equal amount.

Implications

There are two main implications of the limit theorem. The first is that the end result of trade between small groups of people is indeterminate and is determined by what were to Edgeworth non-economic factors. The second is that the equivalent of a price-taking equilibrium can arise from competition between very large groups of traders through the recontracting process. This equilibrium point cannot be moved by groups of traders acting in collusion to try and obtain the gains from trade for themselves as other traders will always have an incentive to leave the group out in the cold. This provides a justification for assuming price-taking behaviour in certain situations, even though explanations of how a price-taking situation can arise (such as tatonnement) are clearly implausibleFact|date=March 2007.

Criticisms

To a large degree the indeterminacy result relies on the assumption that the results of bargaining are indeterminate or, at the very least, outside the realm of economic speculation. Modern advances in game theory, such as those developed by John Nash, challenge this assumption and derive stable equilibria (such as the Nash equilibrium ) in complicated bargaining situationsFact|date=March 2007. Further, Edgeworth's proposed recontracting process is highly stylised, involving traders obtaining information by costlessly making, breaking and re-making contracts with each other. Marshall strongly criticised Edgeworth on this point. If the recontracting process does not explain real world behaviour then the result that the price-taking equilibrium point will be reached by competitive traders will not necessarily be trueFact|date=March 2007.

ee also

*Central limit theorem

References

*Cite book |last=Edgeworth |first=Francis Ysidro |title=Mathematical Psychics |date=1881 |url=http://socserv.mcmaster.ca/econ/ugcm/3ll3/edgeworth/mathpsychics.pdf |publisher=Kegan Paul

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• Limit theorem — may refer to: * Central limit theorem, in probability theory * Edgeworth s limit theorem, in economics …   Wikipedia

• Edgeworth series — The Gram Charlier A series and the Edgeworth series, named in honor of Francis Ysidro Edgeworth, are series that approximate a probability distribution in terms of its cumulants. The series are the same; but, the arrangement of terms (and thus… …   Wikipedia

• Edgeworth conjecture — In economics, the Edgeworth conjecture is the idea, named after Francis Ysidro Edgeworth, that the core of an economy shrinks to the set of Walrasian equilibria as the number of agents increases to infinity.The core of an economy is a concept… …   Wikipedia

• Francis Ysidro Edgeworth — (8 February 1845 ndash; 13 February 1926) made significant contributions to the methods of statistics during the 1880s. From 1891 onward he was the editor of a leading academic journal in economics and his own writings in economics were… …   Wikipedia

• List of economics topics — This aims to be a complete list of the articles on economics. It does not include articles about economists, who are listed in the list of economists. NOTOC A * Accounting Accounting reform Actuary Adaptive expectations Adverse selection Agent… …   Wikipedia

• Scientific phenomena named after people — This is a list of scientific phenomena and concepts named after people (eponymous phenomena). For other lists of eponyms, see eponym. NOTOC A* Abderhalden ninhydrin reaction Emil Abderhalden * Abney effect, Abney s law of additivity William de… …   Wikipedia

• Normal distribution — This article is about the univariate normal distribution. For normally distributed vectors, see Multivariate normal distribution. Probability density function The red line is the standard normal distribution Cumulative distribution function …   Wikipedia

• Maximum likelihood — In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of a statistical model. When applied to a data set and given a statistical model, maximum likelihood estimation provides estimates for the model s… …   Wikipedia

• List of probability topics — This is a list of probability topics, by Wikipedia page. It overlaps with the (alphabetical) list of statistical topics. There are also the list of probabilists and list of statisticians.General aspects*Probability *Randomness, Pseudorandomness,… …   Wikipedia

• List of statistics topics — Please add any Wikipedia articles related to statistics that are not already on this list.The Related changes link in the margin of this page (below search) leads to a list of the most recent changes to the articles listed below. To see the most… …   Wikipedia